DOI QR코드

DOI QR Code

정수압이 해양콘크리트의 염화물이온 침투에 미치는 영향

Influence of Hydrostatic Pressure on Chloride Ion Penetration of Marine Concrete

  • 김경태 (충남대학교 건축공학과) ;
  • 김규용 (충남대학교 건축공학과) ;
  • 남정수 (충남대학교 건축공학과) ;
  • 이보경 (한국지질자원연구원) ;
  • 임창혁 (한국해양과학기술원 부설 선박해양플랜트연구소)
  • 투고 : 2018.09.02
  • 심사 : 2018.11.07
  • 발행 : 2019.01.01

초록

해양 콘크리트 구조물 중 침지대에 위치한 구조물은 수심이 10 m 깊어질수록 1 atm의 정수압을 받아 염화물이온 침투가 촉진될 가능성이 있다. 본 연구에서는 정수압이 해양콘크리트의 염화물이온침투에 미치는 영향과 원인을 평가하기 위하여 보통 포틀랜드 시멘트와 고로슬래그 시멘트를 활용한 콘크리트를 각각 1, 6 atm의 정수압과 인공해수에 노출시켜 깊이별 수용성 염화물량과 미세구조 분석을 실시하였다. 측정결과 6 atm의 정수압을 받는 콘크리트는 표면 염화물이온 농도가 급격하게 상승하며, 깊이별 수용성 염화물량이 증가하는 경향을 나타내었다. 또한, 정수압을 받은 콘크리트는 5~100 nm에 해당하는 모세관공극이 증가하는 경향을 나타내었다.

The Marine concrete that located at immersion zone receives an hydrostatic pressure of 1 atm as depth of the water increased by 10 m. And it could accelerate chloride ion penetration. In this study, to evaluate the influence of hydrostatic pressure on chloride ion penetration, concrete mixed by ordinary Portland cement and Portland blast-furnace slag cement was exposed to 1 and 6 atm and substitute ocean water. As a result, the surface chloride ion concentration of the concrete under 6 atm of hydrostatic pressure increased rapidly and the water-soluble chloride ion contents was increased by depth. In addition, the concrete under 6 atm of hydrostatic pressure showed the increase of capillary pores corresponding to 5~100 nm.

키워드

참고문헌

  1. Koh, K. T., Jang, I. Y., Kim, S. W., Lee, K. M.(2004), Materials and Construction of Off-Shore Concrete Structures, Journal of the Korea Concrete Institute, 16(6), 26-30.
  2. Lee, B. K., Kim, G. Y., Kim, G. T., Sin, K. S., Nam, J. S.(2017), Chloride Ion penetration Resistance of Slag-replaced Concrete and Cementless Slag Concrete by Marine Environmental Exposure, Journal of the Korea Concrete Institute, 29(3), 299-306. https://doi.org/10.4334/JKCI.2017.29.3.299
  3. Bazant, Z. P. (1979). Physical model for steel corrosion in concrete sea structures-theory. ASCE J Struct Div, 105(6), 1137-1153. https://doi.org/10.1061/JSDEAG.0005168
  4. Nilsson, L. O., Massat, M., Tang, L.(1994), Effect of non-linear chloride binding on the prediction of chloride penetration into concrete structures, Special Publication, 145, 469-486.
  5. Xi, Y., Bazant, Z. P.(1999). Modeling chloride penetration in saturated concrete, Journal of Materials in Civil Engineering, 11(1), 58-65. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(58)
  6. Yoo, J. H., Lee, H. S., Ismail, M. A. (2011). An analytical study on the water penetration and diffusion into concrete under water pressure. Construction and Building Materials, 25(1), 99-108. https://doi.org/10.1016/j.conbuildmat.2010.06.052
  7. Yi, S. T., Hyun, T. Y., Kim, J. K. (2011). The effects of hydraulic pressure and crack width on water permeability of penetration crack-induced concrete. Construction and Building Materials, 25(5), 2576-2583. https://doi.org/10.1016/j.conbuildmat.2010.11.107
  8. Kang, S. P., Kim, Y. S., Song, H. W., Kim, G. Y.(2010). The Prediction Model of Carbonation Process by $CO_2$ Diffusion Using the Air Permeability Coefficient for Concrete. Journal of the Korea Concrete Institute, 22(2), 209-217. https://doi.org/10.4334/JKCI.2010.22.2.209
  9. Kim, N. W., Yeo, D. G., Song, J. H., Bae, J. S.(2007), A Study on the Characteristic of Capillary Pore and Chloride Diffusivity by Electrical Difference of High-Strength Concrete Using Metakaolin, Journal of the Korea Concrete Institute, 19(4), 499-506. https://doi.org/10.4334/JKCI.2007.19.4.499
  10. Yang, C. C., Cho, S. W., & Wang, L. C. (2006). The relationship between pore structure and chloride diffusivity from ponding test in cement-based materials. Materials chemistry and physics, 100(2-3), 203-210. https://doi.org/10.1016/j.matchemphys.2005.12.032