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Abstract. In ordered trees, two randomly chosen vertices are said to

be dependent if one lies under the other. If not, we say that they are

independent. We consider several classes of ordered trees with uniform
updegree requirements and find the generating functions for the trees with

two marked dependent/independent vertices. As a result, we compute the
probability for two vertices being dependent/independent. We also count

such trees by the distance between two independent vertices.

1. Introduction

In this paper we pick two points in an ordered tree and ask various
questions. We start with ordered trees and can ask, if the two points are
picked at random, what is the chance one will lie under the other. We will
call such a pair of points dependent and will use the same term for the trees in
which they lie. Otherwise we use the term independent1. We draw our ordered
trees going up and use the terms points and vertices interchangeably.

One application of this might go as follows. You are examining a large
family with, say 1000 edges. There are a small number of vertices where some
phenomenon is observed. Say 15 such vertices. Then check to see which of the(
15
2

)
= 105 pairs are dependent. If the proportion is higher than expected, then

there might be an indication that the phenomenon is hereditary.
The questions we will ask in this paper are as follows.

• What is the proportion of ordered trees with two marked dependent/
independent vertices?
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• When do the two independent vertices meet at a specific height? The
root is at height 0 and by meeting point we mean the highest point
beneath the two vertices that were selected.

We use only a few simple tools such as the V = TL equation and these tools
lead quickly to many results where V,L, and T denote the generating functions
for trees with a marked vertex, for trees with a marked leaf, and for the number
of trees respectively, see [2].

We generalize the prime example of ordered trees to trees that have the
same updegree possibilities at each vertex. This is a known concept but with
various names. We use UUR as in uniform updegree requirement. In a more
limited context [3,4,10] the terms simply generated, simple variety, and S-tree
are used.

One well known example is Motzkin trees where the updegree of each vertex
is 0, 1, or 2 with 0 indicating a leaf.

The A-sequence of a family of trees is (a0, a1, a2, a3, . . .) where ak is the
number of possibilities for updegree k. Thus ak = 0 means not allowed, ak = 1
means we can have updegree k, ak = 2 means that all the k edges up from that
vertex are all red or all green. Arbitrary weights are allowed. Here is a short
list for the A-sequences of trees with uniform conditions on updegrees.

Type of UUR tree A-sequence

Ordered tree 1, 1, 1, 1, 1 . . .
Motzkin tree 1, 1, 1, 0, 0, . . .
incomplete binary tree 1, 2, 1, 0, 0, . . .
complete binary tree 1, 0, 1, 0, 0, . . .
even tree 1, 0, 1, 0, 1, 0, . . .
incomplete ternary tree 1, 3, 3, 1, 0, 0, . . .
complete ternary tree 1, 0, 0, 1, 0, 0, 0, . . .
Schröder tree 1, 2, 2, 2, 2, . . .
spoiled child tree 1, 2, 1, 1, 1, . . .
Hex tree 1, 3, 1, 0, 0, . . .
Gamma tree 1, 0, 1, 1, 1, . . .
simple tree (path) 1, 1, 0, 0, 0, . . .

We will call the generating function for the A-sequence the updegree function
and we denote it as A(z) or simply A.

We observe that a tree with n edges has (n+ 1) vertices so V =
∑
n≥0(n+

1)tnz
n where tn is the number of trees with n edges. Thus V = (zT )′ = T+zT ′.

In [1], it is shown that two vertex-related statistics of UUR trees can be
expressed as so-called Riordan matrices. A Riordan matrix is an infinite lower
triangular matrix whose kth column is defined by the generating function
g(z)f(z)k for g(z), f(z) ∈ C[[z]] such that f(0) = 0. The Riordan matrix
is denoted by (g(z), f(z)) or (g, f). If B(z) is the generating function for the
column vector obtained by multiplying a Riordan matrix (g, f) by a column
vector [h0, h1, . . .]

T with h(z) =
∑
n≥0 hnz

n, then B(z) = g(z) · (h ◦ f)(z).
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This is called the fundamental theorem for Riordan matrices (FTRM) and we
will use the notation B = (g, f) ∗ h for [b0, b1, . . .]

T = (g, f)[h0, h1, . . .]
T . By

the FTRM, the usual matrix multiplication of two Riordan matrices can be
computed in terms of generating functions as:

(g, f) ∗ (h, `) = (g · (h ◦ f), ` ◦ f).

Indeed, it is proved in [1] that if vn,k (`n,k, resp.) is the number of vertices
(leaves, resp.) at height k over UUR trees with n edges, then the corresponding
matrices can be expressed as Riordan matrices as follows:

V := [vn,k]n,k≥0 = (T, L1) and L := [`n,k]n,k≥0 = (1, L1) ,(1)

where L1 = zT ′/V . It is also shown in [1] that a matrix version of V = TL is
given by

V = TL,

where T = (T, z). It turns out that many statistics related to UUR trees with
a dependent/independent pair of vertices can be expressed in terms of Riordan
matrices.

2. Dependence and independence of a pair of vertices

In order to count the UUR trees with two dependent/independent vertices
by the height of certain distinguishing points, we first refine the leaf function
by height.

Let Lk be the generating function for UUR trees with a marked leaf at height
k. Then we have L = L0 + L1 + L2 + · · · since every leaf must be at some
height. We also observe that Lk = (L1)k from (1). Hence

L = L ∗ 1

1− z
= (1, L1) ∗ 1

1− z
=

1

1− L1

and inverting gives

L1 = 1− 1

L
= 1− 1

V/T
=
V − T
V

=
(zT )′ − T

V
=
zT ′

V
.

We also find that L1 =
∑
j≥1 aj

(
j
1

)
z(zT )j−1 where we choose one of the j

edges to be the leaf and can attach trees to the other j − 1 edges at the root.
Thus L1 = z(A′ ◦ (zT )).

We can now “uplift” the result at the root to height 1 (or k) by multiplying
by L1 (or (L1)k). This property will be called the uplift principle.

Theorem 2.1. Let T be the set of UUR trees and let dn,k be the number of
trees with n edges in T that have two marked dependent vertices, the lower one
of which is at level k. Then

[dn,k]n,k≥0 = (T (L− 1), L1) = (V − T, L1) .

Proof. If one vertex lies above the other at level k, our guiding picture is:
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b bb

b bb

b b

b bb

b

L
k

1

T

L− 1

v2

v1

Suppose that we mark one vertex v1 at level k first and then mark another
vertex v2 above v1. Since two marked vertices should be distinct, we obtain
the generating function Lk1(L − 1). Also, since v2 need not to be a leaf, we
multiply Lk1(L− 1) by T for an arbitrary tree rooted at v2. Then [dn,k]n,k≥0 =
(T (L− 1), L1). �

By the FTRM, the generating function for the number of trees with n edges
in T that have two marked dependent vertices is (T (L− 1), L1) ∗ 1

1−z = T (L−
1) · 1

1−L1
= T (L− 1)L.

What happens when we choose two independent vertices?, i.e., not one above
the other. Each such pair will have a meeting point, the vertex of maximum
height that is beneath both points.

Theorem 2.2. Let T be the set of UUR trees with the updegree function A
and let mn,k be the number of trees with n edges in T that have two marked
independent vertices meeting at height k ≥ 0. Then

[mn,k]n,k≥0 =

(
(zV )2(A′′ ◦ (zT ))

2
, L1

)
.

Proof. We first consider the case where k = 0, i.e., two marked independent
vertices meet at the root. If the updegree of the root is n, then there are

(
n
2

)
possibilities to choose two principal subtrees each of which includes a marked
vertex. Since the remaining n− 2 principal subtrees can be arbitrary, we have
the generating function

(
n
2

)
anz

nV 2Tn−2. Summing over all n ≥ 2, we obtain∑
n≥2

(
n

2

)
anz

nV 2Tn−2 =
L2

2

∑
n≥2

n(n− 1)an(zT )n

=
z2L2T 2

2
·
∑
n≥2

n(n− 1)an(zT )n−2

=
(zV )2

2
· (A′′ ◦ (zT )).

The generating function for the case k ≥ 1 follows from the uplift principle. �
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By the FTRM, the generating function for the total number of UUR trees
with two marked independent vertices is

(
(zV )2(A′′ ◦ (zT ))

2
, L1

)
∗ 1

1− z
(2)

=
(zV )2(A′′ ◦ (zT ))

2
· 1

1− L1

=
(zV )2(A′′ ◦ (zT ))L

2
.

We now have basic equations for UUR trees with one or two marked vertices.
For one marked vertex the basic equation is the One Point Equation

V = TL or (zT )′ = TL.

For two marked vertices we have the Two Point Equation

z(zT )′′

2
= L(L− 1)T +

(zV )2

2
· (A′′ ◦ (zT ))L.

This holds since the generating function for the number of UUR trees with two
distinct marked vertices is 1

2

∑
n≥2(n + 1)ntnz

n = z
2 (zT )′′. The two terms on

the right hand side come from the dependent and independent cases.
The rest of the present paper is devoted to several statistics related to UUR

trees with two marked dependent/independent vertices using the results ob-
tained in this section.

Example A. Ordered trees
We first examine the most basic case, ordered trees. Here T = C = 1 + zC2,

the generating function for the Catalan numbers. Since C =
∑
n≥0

1
n+1

(
2n
n

)
zn

we have V = (zC)′ =
∑
n≥0

(
2n
n

)
zn. These are the central binomial coefficients

with the generating function B = 1√
1−4z . Since V = B and T ′ = C ′ = BC2

we have L1 = zT ′/V = zC2. We use the following facts [5]:

[zn]Ck =
k

2n+ k

(
2n+ k

n

)
,

[zn]BCk =

(
2n+ k

n

)
,

[zn]B−1 = [zn]
1− 4z√
1− 4z

=

(
2n

n

)
− 4

(
2n− 2

n− 1

)
.
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By Theorem 2.1, the number of ordered trees with two marked dependent
vertices by the height of the lower vertex starts with

(
B − C, zC2

)
=

[
n− k

n+ k + 1

(
2n

n− k

)]

=



0
1 0
4 1 0
15 6 1 0 · · ·
56 28 8 1 0
210 120 45 10 1 0
792 495 220 66 12 1 0

· · · · · ·
. . .


.

(3)

Recall that L = B/C and B = 1 + 2zCB so L − 1 = B−1
2 = zCB and

L = B+1
2 . Thus the generating function counting ordered trees with two marked

dependent vertices is

L(L− 1)T =
B2 − 1

4
· C =

B2 − 1

4
· B − 1

2zB
=

1

8z

(
B2 − 1−B +

1

B

)
= z + 5z2 + 22z3 + 93z4 + 386z5 + 1586z6 + · · · (A000346)2

and

[zn]L(L− 1)T =
1

8
[zn+1]

(
B2 − 1−B +

1

B

)
=

1

8

(
4n+1 −

(
2n+ 2

n+ 1

)
+

((
2n+ 2

n+ 1

)
− 4

(
2n

n

)))
=

1

8

(
4n+1 − 4

(
2n

n

))
.

To check when n = 2 we have 5 possibilities correspond to the row sum of the
third row of (3).

b b b

b

b

b

b

b

b b

This is also the total height of all the vertices. For instance, if n = 3 we have

2The A number (A******) denotes the corresponding sequence in OEIS [8]. If there is no

A number, the sequence is new and doesn’t appear in OEIS so far.
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b

b

b b

b

b

b b

b b b

b b bb

3

2

1

2

1 1 1

2

1

2 2

1
1 1 1

6 + 4 + 4 + 5 + 3 = 22.

If we pick a leaf and a vertex beneath the leaf, that is, one of the two marked
dependent vertices is a leaf, then we get the more elegant generating function

L(L− 1) =
B + 1

2
· B − 1

2
=
B2 − 1

4
=
∑
n≥1

4n−1zn.

This also gives the total height of all the leaves. Again if n = 3 we have

b

b

b b

b

b

b b

b b b

b b bb

3

2

1 1

2 2 2

1 1 1

3 + 3 + 3 + 4 + 3 = 42.

We are now interested in the probability of two randomly chosen vertices
being dependent. The generating function for ordered trees with two marked
distinct vertices is

z

2
(zC)′′ =

z

2
B′ =

z

2
2B3 = zB3 = z + 6z2 + 30z3 + 140z4 + 630z5 + · · ·

=
∑
n≥1

n

2

(
2n

n

)
zn. (A002457)

The ratio of ordered trees with two marked dependent vertices to all ordered
trees with two distinct vertices is

1
8

(
4n+1 + 4

(
2n
n

))
n
2

(
2n
n

) ∼ 1

4n
· 4n+1

4n√
πn

+
8

n
=

√
π

n
+

8

n
∼
√
π

n
.

For example, when n = 100 we have
√

π
100 ; 0.17725 while the actual ratio is

numerically 0.18747.
On the other hand, since A′′ = 2(1 − z)−3, by Theorem 2.2 the number of

ordered trees with n + 2 edges which have two marked independent vertices
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meeting at height k starts with

[mn+2,k]n,k≥0 =
(
B2C3, zC2

)
=



1
7 1
37 9 1 · · ·
176 56 11 1
794 299 79 13 1
3473 1471 470 106 15 1

· · ·
. . .


.

We note that the matrix is shifted two rows up by removing z2 from the first
generating function z2B2C3.

A routine, but lengthy, computation yields

mn,k =

n−k∑
j=0

2k + 3

2j + 2k + 3

(
2j + 2k + 3

j

)
4n−k−j .

For instance, when two vertices meet at height 1 we have for n ≥ 3

mn,1 =
1

2

(
4n − 5n2 + 5n+ 2

(n+ 2)(n+ 1)

(
2n

n

))
.

By (2), the generating function for ordered trees with two marked indepen-
dent vertices is

(zB)2

2
· 2

(1− zC)3
· B
C

= z2B3C2

= z2 + 8z3 + 47z4 + 244z5 + 1186z6 + 5536z7 + · · · (A029760)

whose nth coefficient is 1
2

(
(n+ 1)

(
2n
n

)
− 4n

)
.

So the probability that two independent vertices meet at height 1 is

mn,1

1
2

(
(n+ 1)

(
2n
n

)
− 4n

) =
4n − 5n2+5n+2

(n+2)(n+1)

(
2n
n

)
(n+ 1)

(
2n
n

)
− 4n

∼
√
π

n
.

For ordered trees, we have a simple graphical proof of Theorem 2.2 since
the root (also any vertex) can have any degree. First we have the picture that
guarantees that the meeting point is the root.

b b

V V

z z

Filling in the rest gives us
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b b

V V

z z

T

T T

and the generating function is z2T 3V 2, i.e.,

z2C3B2 = C(zBC)2 = C

(
B − 1

2

)2

=
1

2z

(
1− 1

B

)(
B − 1

2

)2

=
1

8z

(
B2 − 3B + 3− 1

B

)
= z2 + 7z3 + 37z4 + 176z5 + 794z6 + 3473z7 + · · · (A006419).

Thus for n ≥ 1,

[zn]z2C3B2 =
1

8
[zn+1]

(
B2 − 3B + 3− (B − 4zB)

)
=

1

8

(
4n+1 − 4

(
2n+ 2

n+ 1

)
+

(
2n

n

))
=

1

2

(
4n − 3n+ 1

n+ 1

(
2n

n

))
.

We end the first example with an additional observation. What is the chance
that one of two independent vertices is on the left most branch? By the left
most branch we mean the left most principal (rooted at the root of the whole
tree) subtree.

Since the generating function counting the total number of independent
pairs of points over all ordered trees is z2B3C2, the generating function for
such independent pairs to both be in the left most branch is

z(z2B3C2)C =

(
B − 1

2

)3

= z3 + 9z4 + 57z5 + 312z6 + 1578z7 + 7599z8 + · · · (A045720).

On the other hand, the generating function for the case where one vertex is in
the left most branch while the other vertex is not in the left most branch is

zB(B − C) =

(
B − 1

2

)2

= z2 + 6z3 + 29z4 + 130z5 + 562z6 + 2380z7 + · · · (A008549).

We already showed that

[zn]z2B3C2 =
1

2

(
(n+ 1)

(
2n

n

)
− 4n

)
∼ n

2

(
2n

n

)
.

Similar computation yields

[zn]

(
B − 1

2

)3

=
1

8

(
(2n+ 4)

(
2n

n

)
− 3 · 4n

)
∼ n

4

(
2n

n

)
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and

[zn]

(
B − 1

2

)2

=
1

4

(
4n − 2

(
2n

n

))
∼
√
πn

4

(
2n

n

)
.

Thus of all pairs of independent vertices, in the limit, one half will have both
in the left most branch.

Example B. Oldest Child (or Schröder) trees
The Schröder numbers count the number of lattice paths from (0, 0) to (2n, 0)

using steps U = (1, 1), D = (1,−1), and H = (2, 0) with the provision that the
paths never go below the x-axis. If we denote the generating function as r(z)
or r we have

r = 1 + zr + zr2 =
1

1− z − zr
=

1− z −
√

1− 6z + z2

2z

= 1 + 2z + 6z2 + 22z3 + 90z4 + · · · . (A006318)

These are called the large Schröder numbers.
If no horizontal steps are allowed along the x-axis, then we have the small

Schröder numbers with generating function

s(z) = s = 1 + zrs =
1

1− zr
=
r + 1

2
.

Note also that r = s
1−zs .

If we do allow the paths to go below the x-axis, we have the Delannoy
numbers with generating function

D(z) = D = 1 + zD + 2zrD =
1√

1− 6z + z2

= s+ szD + szrD(4)

=
s

1− zs+ zsr
=

s

1− zs(r + 1)
=

s

1− 2zs2
.

To see (4), we consider paths which stay above the x-axis with no horizontal
steps on the x-axis (s) or such paths followed by a horizontal step (szD) or
such paths followed by down step (szrD). Similar reasoning leads to D =
r + zr2D = r

1−zr2 . All this material is well known and discussed in detail in

[10, Ch.6] and with some history in [9].
More novel is the connection with oldest child (Schröder) trees. These are

ordered trees where the left most edge from a vertex can be either red or green.
In terms of family sociology, an oldest child might be spoiled or not, hence the
name. The A-sequence for such trees is 1, 2, 2, 2, . . . so A(z) = 1+z

1−z .

The one point equation V = TL has T = r and V = (zr)′ = r + zr′. But
r′ = r2 1+r

1−zr2 so that

V = r + zr2
1 + r

1− zr2
= r + zr(1 + r)D = r + 2zrsD
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and this equation gives us that

L =
V

r
= 1 + 2zsD = 1 + 2zs

s

1− 2zs2
=

1

1− 2zs2
.

Then L− 1 = 2zs2

1−2zs2 so

L(L− 1) = 2z

(
s

1− 2zs2

)2

= 2zD2

=
2z

1− 6z + z2
= 2z + 12z2 + 70z3 + 408z4 + · · ·

and this counts all leaf heights.
Incidentally the sequence 1, 6, 35, 204, . . . corresponding to 1

1−6z+z2 counts

many things, see (A001109) in [8]. Among them is the incircle radius for
pythagorean triangles where the short sides differ by 1. The series starts with
the 3 : 4 : 5 triangle having an incircle of radius 1 while the 20 : 21 : 29 triangle
has an incircle of radius 6.

The generating function for trees with two dependent points is

L(L− 1)T =
2zr

1− 6z + z2

= 2z + 16z2 + 106z3 + 664z4 + 4058z5 + · · · . (A110099)

For independent points we start with

A′′(zr) =
4

(1− zr)3
= 4s3.

By Theorem 2.2, a lengthy computation of generating functions gives the Ri-
ordan matrix defined by simple generating functions

[mn+2,k]n,k≥0 =
(
2sr2D2, 2zs2

)

=



2
22 4
176 52 8 · · ·
1248 468 120 16
8330 3620 1220 272 32
53678 25832 10064 2992 608 64

· · ·
. . .


.

For the total, by applying the FTRM to the above matrix but shifted two rows
down, we obtain(

2z2sr2D2, 2zs2
)
∗ 1

1− z
= 2z2r2D2 · s

1− 2zs2
= 2z2r2D3

= 2z2 + 26z3 + 236z4 + 1852z5 + · · · .
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For instance consider oldest child trees with 7 edges. Then the probable
number of pairs of independent vertices with a meeting point at height k are
tabulated as follows, accurate to 4 places:

k 0 1 2 3 4 5
[zn]2z2sr2D2(2zs2)k

[zn]2z2r2D3 0.5757 0.2771 0.1079 0.0321 0.0065 0.0007

3. Distance between two vertices

Another question we may ask concerns the distance between two vertices.
For complete binary trees, the distance between two vertices measures the
similarity between two species in a phylogenetic tree [6, 7].

Theorem 3.1. Let T be the set of UUR trees with the updegree function A
and let hn,k be the number of trees with n+ 2 edges in T that have two marked
independent vertices at distance k + 2. Then

Vind := [hn,k]n,k≥0 =

(
LT 2(A′′ ◦ (zT ))

2
, L1

)
D

where D = diag(1, 2, 3, . . .).

Proof. Suppose that the two marked independent vertices meet at height 0,
i.e., the root is the meeting point m. An UUR tree τ that has such two vertices
is of the form

b b
T T

b

b

b

b

b

b

b

b

b b b b b b

b b b
b b b

b b b
b b b

b b b
b b b

v1

b b b b b b

b b b b b b

b b b

b b b

b b b

b b b

b b b

b b b

b b b

v2

T

T

k − ℓ

ℓ

τ :

m

where 1 ≤ ` ≤ k − 1 and the other subtrees contribute a T . Let P1 and P2 be
the paths from the root m of τ to v1 and v2, respectively. Consider the bottom
subtree of τ that has m as its root and one edge towards each of v1 and v2.

Then such a subtree contributes
∑
j≥2

(
j
2

)
ajz

2(zT )j−2 = z2

2 (A′′ ◦ (zT )).

On the other hand, consider a tree whose root v(6= v1, v2, m) is a vertex
lying on P1 or P2, and has another vertex w on the path as a child of v which
is a leaf at the same time. There are (` − 1) + (k − ` − 1) = k − 2 such trees

and the generating function is
∑
j≥1

(
j
1

)
ajz(zT )j−1 = z(A′ ◦ (zT )) = L1.
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For each ` = 1, 2, . . . , k − 1 the generating function for τ is

(zT )2

2
(A′′ ◦ (zT ))(z(A′ ◦ (zT )))k−2

including the two T s for trees with roots v1 and v2, so total we have

(k − 1)
(zT )2

2
(A′′ ◦ (zT ))(z(A′ ◦ (zT )))k−2.

By multiplying L to uplift the meeting point to any height, and removing z2

to start from n = 2, we obtain the desired result. �

If we remove the two top trees rooted at v1 and v2 from the tree τ in the proof
of Theorem 3.1, then we obtain the results on two leaves at a given distance.
Note that any two distinct leaves are independent.

Corollary 3.2. Let T be the set of UUR trees with the updegree function A
and let bn,k be the number of trees with n+ 2 edges in T that have two marked
leaves at distance k + 2. Then

Lind := [bn,k]n,k≥0 =

(
L(A′′ ◦ (zT ))

2
, L1

)
D

where D = diag(1, 2, 3, . . .).

By Riordan multiplication we see that the matrices counting UUR trees with
two marked independent vertices and two marked leaves by distance are related
as

T2Vind = Lind
which is in contrast to V = TL.

Example C. Complete binary trees
For complete binary trees, A = 1 + z2 and L = B(z2) so the generating

function for the complete binary trees with two marked leaves is

z2L3 =
z2

(1− 4z2)3/2
= z2 + 6z4 + 30z6 + 140z8 + 630z10 + · · · (A002457)

and [zn]z2L3 = (n− 1)!/
(
(n2 − 1)!

)2
for even n ≥ 2.

It follows from Corollary 3.2 that the number of complete binary trees on n
edges with two marked leaves at distance k is

1
0
2 2
0 0 · · ·
6 6 4
0 0 0
20 20 16 8

· · ·
. . .
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whose (n, k)-entry is

[zn](k − 1)2k−2z2k−2 · 1√
1− 4z2

·

(
1−
√

1− 4z2

2z2

)k−2

=

{
0 if n is odd,

(k − 1)2k−2
(n−k

n−2
2

)
if n is even.

(5)

For instance, consider complete binary trees with 10 edges. If we pick two
leaves randomly then they have about 29% chance of being at distance 4, see
Figure 1.

Figure 1. Distribution of pairs of leaves in complete binary
trees with 10 edges by distance.

Figure 2 represents the ratio of complete binary trees on n edges with two
marked leaves at a given distance. For example, the line for the case k = 4
passes through (6, 0.4). This means that 40% of pairs of leaves in complete
binary trees with 6 edges are at distance 4.

As one can see in Figure 2, the maximum ratio of complete binary trees with
two marked leaves at distance k is attained at different values of k depending
on the number of edges. Specifically, if we consider complete binary trees with
n edges and the maximum ratio occurs at kmax

n , then kmax
2 = 2 and kmax

4 = 3.
For a fixed n ≥ 6, the ratio function is given by

ρn(k) =
(k − 2)2k−3

(n−k+1
n−2
2

)
(k − 1)2k−2

(n−k
n−2
2

) =
1

2
− n(k − 3)

2(k − 1)(2k − n− 4)
.

Note that the minimum (maximum, resp.) possible distance between two
marked leaves in a complete binary tree with n edges is 2 (n/2 + 1, resp.).
The ratio function ρn(k) is monotone increasing in the interval [2, n/2 + 1].
To find kmax

n , it suffices to find k such that ρn(k) > 1 which is equivalent to
k2− 3k− n+ 2 < 0, or k < (3 +

√
1 + 4n)/2. Now we compare the numbers in

(5) at two integers k = (3 +
√

1 + 4n)/2 and (1 +
√

1 + 4n)/2.
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Figure 2. Distribution of complete binary trees with two
marked leaves at a given distance by the number of edges.
Different colors are used to distinguish the distances between
two leaves.

If n = m(m + 1), then k = m + 2, and the number in (5) is the same at
both k = m + 2 and k = m + 1. This implies kmax

n = m + 1,m + 2. On the
other hand, n = (m+ 1)(m+ 2) gives k = m+ 3 which can be covered by the
case we already computed. Further, the number in (5) attains a bigger value
at k = m+ 2 than at k = m+ 1. So consequently we obtain

kmax
n =

{
m+ 1, m+ 2 if n = m(m+ 1) for m ≥ 2,

m+ 2 if m(m+ 1) < n < (m+ 1)(m+ 2) for m ≥ 2.

For example, kmax
10 = 4 means that for complete binary trees with 10 edges the

likeliest distance between two leaves is 4.

Theorem 3.3. Let T be the set of UUR trees with the updegree function A
and let cn,k be the number of trees with n+ 1 edges in T that have two marked
dependent vertices at distance k + 1. Then

[cn,k]n,k≥0 = (V,L1) .

Proof. Suppose that one of the two marked dependent vertices is the root. We
have the same figure for an UUR tree τ that has such two vertices as in the proof
of Theorem 3.1 but v1 and v2 in τ lie on a single path and there is no meeting
point. Then the generating function for the trees with n edges that have

two marked dependent vertices at distance k is TLLk1 = TL (z(A′ ◦ (zT )))
k

=

V (z(A′ ◦ (zT )))
k

for k ≥ 1. �
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Example D. Motzkin trees
Motzkin trees have the updegree function A = 1 + z + z2 so

T =
1− z −

√
1− 2z − 3z2

2z2
and L =

1√
1− 2z − 3z2

.

What are the chances of two vertices in a Motzkin tree with n edges having
distance 3? By Theorems 3.1 and 3.3, the generating functions for such pairs
of independent and dependent vertices are respectively

I3(z) := 2(zT )2(z(1 + 2zT )) =
1

z2
(
z2 + 3z − 2 + (3z3 − 2z2 − 5z + 2)L

)
= 2z3 + 10z4 + 36z5 + 120z6 + 380z7 + · · ·

and

D3(z) := V (z(1 + 2zT ))3

= − 1

2z2
(
3z3 − 10z2 − 12z + 8 + (−9z4 − 21z3 + 14z2 + 20z − 8)L

)
= z3 + 8z4 + 36z5 + 132z6 + 445z7 + · · · .

For example, there are 10 Motzkin trees with 4 edges which have two marked
independent vertices of distance 3:

b bb

b

b

b b

b

b

b b

b b

b b

b bb b

b

b

b b

b

b b

b b

b b

b b

b b

b b b b

b b

Singularity analysis leads to

I3(z) =
√

3(1− 3z)−
1
2 +O((1− 3z)

1
2 ),

D3(z) =
3
√

3

2
(1− 3z)−

1
2 +O((1− 3z)

1
2 )

which give hn,3 ∼
√

3
√

1
πn · 3n and cn,3 ∼ 3

√
3

2

√
1
πn · 3n. It follows from

Theorems 2.1 and 2.2 that the generating function for Motzkin trees with two
marked vertices is

(zV )2L =
3
√

3

8
(1− 3z)−

3
2 +O((1− 3z)−

1
2 )

for the independent case and is

V (L− 1) =
9

4
(1− 3z)−1 +O((1− 3z)−

1
2 )
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for the dependent case. Thus the ratio of two independent vertices at distance
3 to all pairs of independent vertices in Motzkin trees is

hn,3
total

∼

√
3√
πn
· 3n

3
√
3

4

√
n
π · 3n

=
4

3n
.

For the dependent case, we obtain

cn,3
total

∼
3
√
3

2

√
1
πn · 3

n

9
4 · 3n

=
2
√

3

3

√
1

πn
.

For example, we have
h500,3

total ∼ 0.00266 and
c500,3
total ∼ 0.02913 while the actual

ratios are to 6 decimal places 0.00303 and 0.03101, respectively.
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