DOI QR코드

DOI QR Code

An improved Kalman filter for joint estimation of structural states and unknown loadings

  • He, Jia (College of Civil Engineering, Hunan University) ;
  • Zhang, Xiaoxiong (College of Civil Engineering, Hunan University) ;
  • Dai, Naxin (The School of Civil Engineering, The University of South China)
  • Received : 2018.07.11
  • Accepted : 2019.05.13
  • Published : 2019.08.25

Abstract

The classical Kalman filter (KF) provides a practical and efficient way for state estimation. It is, however, not applicable when the external excitations applied to the structures are unknown. Moreover, it is known the classical KF is only suitable for linear systems and can't handle the nonlinear cases. The aim of this paper is to extend the classical KF approach to circumvent the aforementioned limitations for the joint estimation of structural states and the unknown inputs. On the basis of the scheme of the classical KF, analytical recursive solution of an improved KF approach is derived and presented. A revised form of observation equation is obtained basing on a projection matrix. The structural states and the unknown inputs are then simultaneously estimated with limited measurements in linear or nonlinear systems. The efficiency and accuracy of the proposed approach is verified via a five-story shear building, a simply supported beam, and three sorts of nonlinear hysteretic structures. The shaking table tests of a five-story building structure are also employed for the validation of the robustness of the proposed approach. Numerical and experimental results show that the proposed approach can not only satisfactorily estimate structural states, but also identify unknown loadings with acceptable accuracy for both linear and nonlinear systems.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Bernal, D. (2013), "Kalman filter damage detection in the presence of changing process and measurement noise", Mech. Syst. Signal Pr., 39(1-2), 361-371. DOI: 10.1016/j.ymssp.2013.02.012.
  2. Ching, J. and Beck, J.L. (2007), "Real-time reliability estimation for serviceability limit states in structures with uncertain dynamic excitation and incomplete output data", Probab. Eng. Mech., 22(1), 50-62. DOI: 10.1016/j.probengmech.2006.05.006.
  3. Eftekhar Azam, S., Ghisi, A. and Mariani, S. (2012a), "Parallelized sigma-point Kalman filtering for structural dynamics", Comput. Struct., 92-93, 193-205. DOI:10.1016/j.compstruc.2011.11.004.
  4. Eftekhar Azam, S., Bagherinia, M. and Mariani, S. (2012b), "Stochastic system identification via particle and sigma-point Kalman filtering", Scientia Iranica, 19(4), 982-991. DOI: 10.1016/j.scient.2012.06.007.
  5. Eftekhar Azam, S., Chatzi, E. and Papadimitriou, C. (2015a), "A dual Kalman filter approach for state estimation via output-only acceleration measurements", Mech. Syst. Signal Pr., 60-61, 866-886. DOI:10.1016/j.ymssp.2015.02.001.
  6. Eftekhar Azam, S., Chatzi, E., Papadimitriou, C. and Smyth, A. (2015b), "Experimental validation of the Kalman-type filters for online and real-time state and input estimation", J. Vib. Sound, DOI: 10.1177/1077546315617672.
  7. Eftekhar Azam, S., Mariani, S. and Attari, N.K.A. (2017), "Online damage detection via a synergy of proper orthogonal decomposition and recursive Bayesian filters", Nonlinear Dynam., 89(2), 1489-1511. DOI: 10.1007/s11071-017-3530-1.
  8. Gao, F. and Lu, Y. (2006), "A Kalman-filter based time-domain analysis for structural damage diagnosis with noisy signals," J. Sound Vib., 297(3-5), 916-930. DOI: 10.1016/j.jsv.2006.05.007.
  9. Gillijns, S. and De Moor, B. (2007a), "Unbiased minimumvariance input and state estimation for linear discrete-time systems", Automatica, 43, 111-116. DOI: 10.1016/j.automatica.2006.08.002.
  10. Gillijns, S. and De Moor, B. (2007b), "Unbiased minimumvariance input and state estimation for linear discrete-time systems with direct feedthrough", Automatica, 43, 934-937. DOI: 10.1016/j.automatica.2006.11.016.
  11. He, J., Xu, Y.L., Zhang, C.D. and Zhang, X.H. (2015), "Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors", Smart Struct. Syst., 16(6), 981-1002. DOI: 10.12989/sss.2015.16.6.981.
  12. Hernandez, E.M. (2011), "A natural observer for optimal state estimation in second order linear structural systems", Mech. Syst. Signal Pr., 25(8), 2938-2947. DOI:10.1016/j.ymssp.2011.06.003.
  13. Hernandez, E.M., Bernal, B. and Caracoglia, L. (2013), "On-line monitoring of wind-induced stresses and fatigue damage in instrumented structures", Struct. Control. Health Monit., 20(10), 1291-1302. DOI: 10.1002/stc.1536.
  14. Hsieh, C.S. (2009), "Extension of unbiased minimum-variance input and state estimation for systems with unknown inputs", Automatica, 45(9), 2149-2153. DOI: 10.1016/j.automatica.2009.05.004.
  15. Hu, R.P., Xu, Y.L., Lu, X., Zhang, C.D., Zhang, Q.L. and Ding, J.M. (2017), "Integrated multi-type sensor placement and response reconstruction method for high-rise buildings under unknown seismic loading", Struct. Des. Tall Spec. Build., 27(6), e1453, DOI: 10.1002/tal.1453.
  16. Kim, D.W. and Park, C.S. (2017), "Application of Kalman filter for estimating a process disturbance in a building space", Sustainability, 9, 1868. DOI: 10.3390/su9101868.
  17. Lei, Y., Luo, S. and Su, Y. (2016), "Data fusion based improved Kalman filter with unknown inputs and without collocated acceleration measurements", Smart Struct. Syst., 18(3), 375-387. DOI: 10.12989/sss.2016.18.3.375.
  18. Liu, L., Zhu, J., Su, Y. and Lei, Y. (2016), "Improved Kalman filter with unknown inputs based on data fusion of partial acceleration and displacement measurements", Smart Struct. Syst., 17(6), 903-915. DOI: 10.12989/sss.2016.17.6.903.
  19. Lourens, E., Papadimitriou, C., Gillijns, S., Reynders, E., De Roeck, G. and Lombaert, G. (2012a), "Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors," Mech. Syst. Signal Pr., 29, 310-327. DOI: 10.1016/j.ymssp.2012.01.011.
  20. Lourens, E., Reynders, E., DeRoeck, G., Degrande, G. and Lombaert, G. (2012b), "An augmented Kalman filter for force identification in structural dynamics", Mech. Syst. Signal Pr., 27, 446-460. DOI: 10.1016/j.ymssp.2011.09.025.
  21. Naets, F., Cuadrado, J. and Desmet, W. (2015), "Stable force identification in structural dynamics using Kalman filtering and dummy-measurements", Mech. Syst. Signal Pr., 50-51, 235-248. DOI: 10.1016/j.ymssp.2014.05.042.
  22. Pan, S.W., Su, H.Y., Wang, H. and Chu, J. (2011), "The study of joint input and state estimation with Kalman filtering", Trans. Inst. Meas. Control, 33(8), 901-918. DOI: 10.1177/0142331210361551.
  23. Papadimitriou, C., Fritzen, C., Kraemer, P. and Ntotsios, E. (2011), "Fatigue predictions in entire body of metallic structures from a limited number of vibration sensors using Kalman filtering", Struct. Control. Health Monit., 18, 554-573. DOI: 10.1002/stc.395.
  24. Ren, P. and Zhou, Z. (2017), "Strain estimation of truss structures based on augmented Kalman filtering and modal expansion", Adv. Mech. Eng., 9(11), 1-10. DOI: 10.1177/1687814017735788
  25. Smyth, A. and Wu, M. (2007), "Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring", Mech. Syst. Signal Pr., 21(2), 706-723. DOI: 10.1016/j.ymssp.2006.03.005.
  26. Vicario, F., Phan, M.Q., Betti, R. and Longman, R.W. (2015), "Output-only observer/Kalman filter identification (O3KID)", Struct. Control. Health Monit., 22(5), 847-872. DOI: 10.1002/stc.1719.
  27. Welch, G. and Bishop, G. (1995), "An Introduction to the Kalman Filter", Technical Report, University of North Carolina at Chapel Hill Chapel Hill, NC, USA, DOI: 10.1145/800233.807054.
  28. Wu, A.L., Loh, C.H., Yang, J.N., Weng, J.H., Chen, C.H. and Ueng, T.S. (2009), "Input force identification: Application to soil-pile interaction", Struct. Control Vib.. Control, 16, 223-240, DOI: 10.1002/stc.308.
  29. Zhang, C.D. and Xu, Y.L. (2017), "Structural damage identification via response reconstruction under unknown excitation", Struct. Control. Health Monit., 24(8), e1953, DOI: 10.1002/stc.1953.
  30. Zhi, L.H., Li, Q.S. and Fang, M.X. (2016), "Identification of wind loads and estimation of structural responses of super-tall buildings by an inverse method", Comput.-Aided Civil Infrastruct. Eng., 31, 966-982. DOI: 10.1111/mice.12241.
  31. Zhi, L.H., Fang, M.X. and Li, Q.S. (2017), "Estimation of wind loads on a tall building by an inverse method", Struct. Control. Health Monit., 24, e1908, DOI: 10.1002/stc.198
  32. Zhu, S., Zhang, X.H., Xu, Y.L. and Zhan, S. (2013), "Multi-type sensor placement for multi-scale response reconstruction", Adv. Struct. Eng., 16(10), 1779-1797. DOI: 10.1260/1369-4332.16.10.1779.

Cited by

  1. A two-stage Kalman filter for the identification of structural parameters with unknown loads vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.693