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Dependency parsing is often used as a component in many text analysis pipelines. However, 
performance, especially in specialized domains, suffers from the presence of complex termi-
nology. Our hypothesis is that including named entity annotations can improve the speed 
and quality of dependency parses. As part of BLAH5, we built a web service delivering im-
proved dependency parses by taking into account named entity annotations obtained by 
third party services. Our evaluation shows improved results and better speed. 
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Introduction 

Dependency parsing might be used as a component for tackling many text mining prob-
lems. It is often used as a feature to train machine learning algorithms or used for rule-based 
approaches for relation extraction [1,2]; and can be used to train better word embeddings 
[3]. However, as continued research and community efforts in the form of the CoNLL 
shared tasks, for example, show, dependency parsing in general is still not a problem solved 
completely [4]. Making a fast, reliable dependency parser readily available for the wider re-
search community for further processing to build upon will help spur efforts in event and 
relation extraction. 

As previous research has shown, providing named entity information to the dependency 
parser can improve the accuracy of the parses [5,6]. The reasoning is that dedicated named 
entity recognition (NER) tools perform much better in their specific domain, and by ex-
tracting named entities with higher accuracy will facilitate appropriate parsing tools that are 
not trained on biomedical data. 

spaCy is a open-source natural language processing (NLP) library written in Python that 
performs tokenization, Part-of-Speech (PoS) tagging and dependency parsing. It is the fast-
est NLP parser available, and offers state-of-the-art accuracy [2,7]. 

Services such as PubDictionaries and OGER perform dictionary-based entity look up 
[8]. Other state-of-the-art taggers are the Jensen tagger [9] and TaggerOne [10]. 

In this work, we present our contribution to BLAH5. We proposed to build a public web 
service that can be used by researchers and other services, such as PubAnnotation, to obtain 
improved dependency annotations, based upon integration with a NER service (Fig. 1). We 
report on its efficacy here. 
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Related Work 

The most recent extensive evaluation of existing dependency pars-
ers has been performed by Choi et al. [11]. They evaluate 10 dif-
ferent off-the-shelf parsers for accuracy and speed; reporting la-
beled attachment scores (LAS) of 85% to 90%. While spaCy does 
not perform the most accurate in their evaluation, it performs fast-
est maintaining comparable accuracy. Similar scores are reported 
in the 2015 SemEval task [12]. 

Pletscher-Frankild and Jensen [9] note that in text mining litera-
ture, tools are often evaluated for accuracy only, omitting practical 
considerations such as speed and robustness. 

Since the publication of the previously mentioned evaluation of 
dependency parsers [11], new machine learning-based parsers 
have been published, surpassing existing approaches according to 
the respective authors’ own evaluation [13,14]. Amongs them, 
spaCy was updated to employ a neural network to improve perfor-
mance [7]. As Yang et al. [15] show, however, domain adaptation 
remains an issue. 

Methods 

Our web service is implemented using Flask (http://flask.pocoo.
org/), a Python library that facilitates the creating of web interfaces, 
and the aforementioned spaCy (https://spacy.io). spaCy’s structure 
is modular, and processing text happens by calling the respective 
modules. For our approach, we added a further processing step be-
tween “tokenization” and “dependency parsing,” during which we 
will recompute token segmentation taking into account named enti-
ties provided. Then we pass the adjusted token offsets to the depen-
dency parsing module. 

Input format 
Input is provided either as plain text or as a JSON string. The latter 
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Fig. 1. Architecture of our web service.

{"denotations": [
    { "span": { "begin": 11, "end": 14 }, 
    "obj": "DO:005313", 
    "id": "T1" },
    { "span": { "begin": 30, "end": 53 },
    "obj" : "DO:009456",
    "id": "T2" }],
         "text": "Impact of ADHD in adults with 
neurofibromatosis type 1" } 

may either contain just a text field, or additionally annotations in 
PubAnnotation's JSON format (http://www.pubannotation.org/
docs/annotation-format/) (Fig. 2). 

The input is then internally converted into a spaCy object. 
From there, spaCy is used to perform tokenization, PoS tagging 
and dependency parsing, taking into account existing annotations 
if available. 

This is done by tokenizing the text provided, and iterating 
through the given annotations to form a new sequence of tokens. 
This new sequence keeps the NER annotations as individual to-
kens and does not break them down further. In case of conflicting 
and overlapping annotations, we use the leftmost longest match. 

Using this new token sequence, a new spaCy representation ob-
ject is created on which dependency parsing is performed. 

If no annotations are provided manually, our web service will 
automatically call another service to automatically obtain named 
entity annotations. While this could be any service, it is currently 
set to using OGER.  

Output format 
The resulting object is then converted back into JSON, and token 
offsets are computed. The output format is PubAnnotation JSON, 
and can directly be uploaded to PubAnnotation. This also allows to 
make use of PubAnnotation's annotation visualizer, TextAE, as seen 
in Fig. 3. 

Usage 
The code for our web service is publicly available (https://github.

com/OntoGene/blah5), and installation is straight-forward. For 
demonstration purposes, we are running an instance of the web ser-
vice. 

Improved dependency annotations can be obtained using curl or 
wget in the fashion shown in Fig. 4. 

Fig. 2. Example of input to our web service, in json format.
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Adaptation 
The application can be run locally, provided the necessary Python 
libraries are available. To add other independent web services to pro-
vide NER information, refer to the documentation of the code. 

Results 

We evaluated our service in two regards: speed and accuracy. 

Speed 
In order to evaluate speed of our web service, we created a set of 
10,000 randomly selected PubMed abstracts, (1) which we sent to 
the web service directly to obtain “default” dependency parses, and 
(2) which we first tagged for named entities using OGER, and then 
sent to the web service to obtain “improved” parses. Table 1 lists the 
time it took our tool to complete the dependency parsing step for 
both cases. 

We attribute this decrease in processing time to the diminished 

complexity of computing the parses. 
In a practical setting, however, our web service needs to recom-

pute token offsets in order to correctly integrate NERs in the token 
stream. 

While spaCy in the “default” case does this in a internally opti-
mized fashion, our service currently is not optimized to the same de-
gree, which in practice results in overall lower processing times. The 
integration of NERs still produces an advantage, as the generated 
parses avoid some errors that otherwise would have been generated 
(see below). In practice, when using the web service over the net-
work, total processing time will be around 0.3 s per abstract. 

Accuracy 
We expect our service to perform well in situations where multi-
word named entities cause problems for the parser. Below we 
demonstrate two examples in which our service performs well in 
such situations. 

As Figs. 5 and 6 show, complex named entities are problematic for 
the dependency parser and tagger, causing it to tag “kinase” as a verb; 
when in fact it is part of the compound entity “Testis-specific serine/
threonine protein kinase 4 (Tssk4).” This results in an incorrect 
parse tree. 

The second example of Figs. 7 and 8 shows the case where the 
parse is not technically wrong, but convoluted and useless to down-
stream tasks.  

Discussion 

The examples shown above point to the efficacy of our web service. 
However, a more thorough evaluation, while useful, is difficult. This 
is mainly due to the fact that manual creation of parsing annotations 
is prohibitively expensive, and the fact that existing annotated corpo-
ra are annotated in various incompatible formats. For example, de-
pending on the annotation schema, conjunctions can be represented 

curl -F file='@data/sample.json' https://pub.
cl.uzh.ch/projects/ontogene/blah5/ > out.json

Fig. 3. Visualizing the web service’s output in TextAE.

Fig. 4. Example of complete query to the dependency annotation 
server: sample.json is the input file, out.json the output file, both in 
json format.

Table 1. Time required to process a batch of 10,000 PubMed abstracts, 
in the default case (without prior named entity recognition) and with 
added named entity recognition

Default Improved
Total time (s) 1018 931
Per abstract (s) 0.10 0.09
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in various ways, or relationships may be either undirected or have 
opposite directionality. Even though there are efforts to homogenize 
annotation schemes, such as Universal Dependencies [16], they are 
not yet widely adopted. This makes automatic comparison of results 
very difficult. However, since dependency parsing is not usually a 
goal in itself, but a component used for downstream tasks, an extrin-
sic evaluation could be carried out on such a downstream task such 
as relation extraction. 

Conclusion 

We have presented an improved service for dependency parses, and 
show that it can deliver better parses for phrases containing complex 
tokens. 
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