
1 / 6

2019, Korea Genome Organization
This is an open-access article distribut-
ed under the terms of the Creative
Commons Attribution license (http://
creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distri-
bution, and reproduction in any medi-
um, provided the original work is prop-
erly cited.

Dependency parsing is often used as a component in many text analysis pipelines. However,
performance, especially in specialized domains, suffers from the presence of complex termi-
nology. Our hypothesis is that including named entity annotations can improve the speed
and quality of dependency parses. As part of BLAH5, we built a web service delivering im-
proved dependency parses by taking into account named entity annotations obtained by
third party services. Our evaluation shows improved results and better speed.

Keywords: dependency parsing, named entity recognition, natural language processing
Availability: The code for our web service is publicly available (https://github.com/OntoGene/
blah5).

Improving spaCy dependency
annotation and PoS tagging web
service using independent NER services
Nico Colic1*, Fabio Rinaldi1,2,3

1Institute of Computational Linguistics, University of Zurich, CH-8050 Zurich, Switzerland
2IDSIA, CH-6928 Manno, Switzerland
3Swiss Institute of Bioinformatics, Quartier Sorge-Bâtiment Amphipôle, CH-1015 Lausanne,
Switzerland

Introduction

Dependency parsing might be used as a component for tackling many text mining prob-
lems. It is often used as a feature to train machine learning algorithms or used for rule-based
approaches for relation extraction [1,2]; and can be used to train better word embeddings
[3]. However, as continued research and community efforts in the form of the CoNLL
shared tasks, for example, show, dependency parsing in general is still not a problem solved
completely [4]. Making a fast, reliable dependency parser readily available for the wider re-
search community for further processing to build upon will help spur efforts in event and
relation extraction.

As previous research has shown, providing named entity information to the dependency
parser can improve the accuracy of the parses [5,6]. The reasoning is that dedicated named
entity recognition (NER) tools perform much better in their specific domain, and by ex-
tracting named entities with higher accuracy will facilitate appropriate parsing tools that are
not trained on biomedical data.

spaCy is a open-source natural language processing (NLP) library written in Python that
performs tokenization, Part-of-Speech (PoS) tagging and dependency parsing. It is the fast-
est NLP parser available, and offers state-of-the-art accuracy [2,7].

Services such as PubDictionaries and OGER perform dictionary-based entity look up
[8]. Other state-of-the-art taggers are the Jensen tagger [9] and TaggerOne [10].

In this work, we present our contribution to BLAH5. We proposed to build a public web
service that can be used by researchers and other services, such as PubAnnotation, to obtain
improved dependency annotations, based upon integration with a NER service (Fig. 1). We
report on its efficacy here.

Received: February 23, 2019
Revised: May 31, 2019
Accepted: May 31, 2019

*Corresponding author:
E-mail: colic@ifi.uzh.ch

eISSN 2234-0742
Genomics Inform 2019;17(2):e21
https://doi.org/10.5808/GI.2019.17.2.e21

Application note

Related Work

The most recent extensive evaluation of existing dependency pars-
ers has been performed by Choi et al. [11]. They evaluate 10 dif-
ferent off-the-shelf parsers for accuracy and speed; reporting la-
beled attachment scores (LAS) of 85% to 90%. While spaCy does
not perform the most accurate in their evaluation, it performs fast-
est maintaining comparable accuracy. Similar scores are reported
in the 2015 SemEval task [12].

Pletscher-Frankild and Jensen [9] note that in text mining litera-
ture, tools are often evaluated for accuracy only, omitting practical
considerations such as speed and robustness.

Since the publication of the previously mentioned evaluation of
dependency parsers [11], new machine learning-based parsers
have been published, surpassing existing approaches according to
the respective authors’ own evaluation [13,14]. Amongs them,
spaCy was updated to employ a neural network to improve perfor-
mance [7]. As Yang et al. [15] show, however, domain adaptation
remains an issue.

Methods

Our web service is implemented using Flask (http://flask.pocoo.
org/), a Python library that facilitates the creating of web interfaces,
and the aforementioned spaCy (https://spacy.io). spaCy’s structure
is modular, and processing text happens by calling the respective
modules. For our approach, we added a further processing step be-
tween “tokenization” and “dependency parsing,” during which we
will recompute token segmentation taking into account named enti-
ties provided. Then we pass the adjusted token offsets to the depen-
dency parsing module.

Input format
Input is provided either as plain text or as a JSON string. The latter

pre-annotated
text

OGER

PubDictionaries

...

NER webservices:

improved
spaCy
annotation
serviceplain text

Fig. 1. Architecture of our web service.

{"denotations": [
 { "span": { "begin": 11, "end": 14 },
 "obj": "DO:005313",
 "id": "T1" },
 { "span": { "begin": 30, "end": 53 },
 "obj" : "DO:009456",
 "id": "T2" }],
 "text": "Impact of ADHD in adults with
neurofibromatosis type 1" }

may either contain just a text field, or additionally annotations in
PubAnnotation's JSON format (http://www.pubannotation.org/
docs/annotation-format/) (Fig. 2).

The input is then internally converted into a spaCy object.
From there, spaCy is used to perform tokenization, PoS tagging
and dependency parsing, taking into account existing annotations
if available.

This is done by tokenizing the text provided, and iterating
through the given annotations to form a new sequence of tokens.
This new sequence keeps the NER annotations as individual to-
kens and does not break them down further. In case of conflicting
and overlapping annotations, we use the leftmost longest match.

Using this new token sequence, a new spaCy representation ob-
ject is created on which dependency parsing is performed.

If no annotations are provided manually, our web service will
automatically call another service to automatically obtain named
entity annotations. While this could be any service, it is currently
set to using OGER.

Output format
The resulting object is then converted back into JSON, and token
offsets are computed. The output format is PubAnnotation JSON,
and can directly be uploaded to PubAnnotation. This also allows to
make use of PubAnnotation's annotation visualizer, TextAE, as seen
in Fig. 3.

Usage
The code for our web service is publicly available (https://github.

com/OntoGene/blah5), and installation is straight-forward. For
demonstration purposes, we are running an instance of the web ser-
vice.

Improved dependency annotations can be obtained using curl or
wget in the fashion shown in Fig. 4.

Fig. 2. Example of input to our web service, in json format.

https://doi.org/10.5808/GI.2019.17.2.e212 / 6

Colic N et al. • Improving spaCy dependency annotations

http://flask.pocoo.org/
http://flask.pocoo.org/
http://www.pubannotation.org/docs/annotation-format/
http://www.pubannotation.org/docs/annotation-format/

Adaptation
The application can be run locally, provided the necessary Python
libraries are available. To add other independent web services to pro-
vide NER information, refer to the documentation of the code.

Results

We evaluated our service in two regards: speed and accuracy.

Speed
In order to evaluate speed of our web service, we created a set of
10,000 randomly selected PubMed abstracts, (1) which we sent to
the web service directly to obtain “default” dependency parses, and
(2) which we first tagged for named entities using OGER, and then
sent to the web service to obtain “improved” parses. Table 1 lists the
time it took our tool to complete the dependency parsing step for
both cases.

We attribute this decrease in processing time to the diminished

complexity of computing the parses.
In a practical setting, however, our web service needs to recom-

pute token offsets in order to correctly integrate NERs in the token
stream.

While spaCy in the “default” case does this in a internally opti-
mized fashion, our service currently is not optimized to the same de-
gree, which in practice results in overall lower processing times. The
integration of NERs still produces an advantage, as the generated
parses avoid some errors that otherwise would have been generated
(see below). In practice, when using the web service over the net-
work, total processing time will be around 0.3 s per abstract.

Accuracy
We expect our service to perform well in situations where multi-
word named entities cause problems for the parser. Below we
demonstrate two examples in which our service performs well in
such situations.

As Figs. 5 and 6 show, complex named entities are problematic for
the dependency parser and tagger, causing it to tag “kinase” as a verb;
when in fact it is part of the compound entity “Testis-specific serine/
threonine protein kinase 4 (Tssk4).” This results in an incorrect
parse tree.

The second example of Figs. 7 and 8 shows the case where the
parse is not technically wrong, but convoluted and useless to down-
stream tasks.

Discussion

The examples shown above point to the efficacy of our web service.
However, a more thorough evaluation, while useful, is difficult. This
is mainly due to the fact that manual creation of parsing annotations
is prohibitively expensive, and the fact that existing annotated corpo-
ra are annotated in various incompatible formats. For example, de-
pending on the annotation schema, conjunctions can be represented

curl -F file='@data/sample.json' https://pub.
cl.uzh.ch/projects/ontogene/blah5/ > out.json

Fig. 3. Visualizing the web service’s output in TextAE.

Fig. 4. Example of complete query to the dependency annotation
server: sample.json is the input file, out.json the output file, both in
json format.

Table 1. Time required to process a batch of 10,000 PubMed abstracts,
in the default case (without prior named entity recognition) and with
added named entity recognition

Default Improved
Total time (s) 1018 931
Per abstract (s) 0.10 0.09

Genomics & Informatics 2019;17(2):e21

3 / 6https://doi.org/10.5808/GI.2019.17.2.e21

np
ad

vm
od

am
od

nm
od

co
m

po
un

d
ns

ub
j

de
p

nu
m

m
od

nm
od

do
bj

pr
ep

po
bj

Te
st

is
-P

RO
PN

sp
ec

ifi
c

sp
ec

ifi
c

AD
J

se
rin

e/
N

O
U

N
th

re
on

in
e

VE
RB

pr
ot

ei
n

N
O

U
N

ki
na

se
VE

RB
4

(
N

U
M

Ts
sk

4)
PR

O
PN

O
df

2
N

U
M

at AD

P
Se

r-
76

.
PR

O
PN

ph
os

ph
or

yl
at

es
VE

RB

Fi
g.

 5
. D

ef
au

lt
de

pe
nd

en
cy

 p
ar

se
 fo

r s
en

te
nc

e
Te

st
is-

sp
ec

ifi
c

se
rin

e/
th

re
on

in
e

pr
ot

ei
n

ki
na

se
 4

 (T
ss

k4
) p

ho
sp

ho
ry

la
te

s
Od

f2
 a

t S
er

-7
6.

Se
r.

PR
O

PN
at AD

P
O

df
2

N
O

U
N

ph
os

ph
or

yl
at

es
VE

RB
Ts

sk
4)

PR
O

PN
se

rin
e/

th
re

on
in

e
pr

ot
ei

n
ki

na
se

 4
 (

PR
O

PN

ns
ub

j

do
bj

pr
ep

po
bj

Fi
g.

 6
. I

m
pr

ov
ed

 d
ep

en
de

nc
y

pa
rs

e.

Pr
ev

al
en

ce
N

O
U

N
an

d
CC

O
N

J
m

ut
at

io
n

N
O

U
N

an
al

ys
is

N
O

U
N

of AD
P

sh
or

t/
AD

J
br

an
ch

ed
AD

J
ch

ai
n

N
O

U
N

ac
yl

-
N

O
U

N
Co

A
CC

O
N

J
de

fic
ie

nc
y

(
N

O
U

N
SB

CA
DD

)
N

O
U

N
de

te
ct

ed
.

VE
RB

de
hy

dr
og

en
as

e
N

O
U

N

Fi
g.

 7
. D

ef
au

lt
de

pe
nd

en
cy

 p
ar

se
 fo

r t
he

 s
en

te
nc

e
“P

re
va

le
nc

e
an

d
m

ut
at

io
n

an
al

ys
is

of
 s

ho
rt

/b
ra

nc
he

d
ch

ai
n

ac
yl

-C
oA

 d
eh

yd
ro

ge
na

se
 d

ef
ic

ie
nc

y
(S

BC
AD

D)
 d

et
ec

te
d.

”

ns
ub

j

cc

com
po

un

d

co
nj

am
od

pr
ep

am
od

nm
od

nm
od

nm
od

am
od

po
bj

ap
po

s

https://doi.org/10.5808/GI.2019.17.2.e214 / 6

Colic N et al. • Improving spaCy dependency annotations

in various ways, or relationships may be either undirected or have
opposite directionality. Even though there are efforts to homogenize
annotation schemes, such as Universal Dependencies [16], they are
not yet widely adopted. This makes automatic comparison of results
very difficult. However, since dependency parsing is not usually a
goal in itself, but a component used for downstream tasks, an extrin-
sic evaluation could be carried out on such a downstream task such
as relation extraction.

Conclusion

We have presented an improved service for dependency parses, and
show that it can deliver better parses for phrases containing complex
tokens.

ORCID

Nico Colic: https://orcid.org/0000-0003-1071-5571
Fabio Rinaldi: https://orcid.org/0000-0001-5718-5462

Authors’ Contribution

Conceptualization: NC, FR. Data curation: NC, FR. Formal analy-
sis: NC, FR. Funding acquisition: NC, FR. Methodology: NC, FR.
Writing – original draft: NC, FR. Writing – review & editing: NC,
FR.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

The authors express their gratitude to DBCLS for funding participa-
tion at BLAH5.

References

1. Nguyen TH, Grishman R. Relation extraction: perspective from
convolutional neural networks. In: 2015 Conference of the
North American Chapter of the Association for Computational
Linguistics - Human Language Technologies (NAACL HLT
2015), 2015 May 31-Jun 5, Denver, CO, USA. Stroudsburg: As-
sociation for Computational Linguistics, 2015. pp. 39-48.

2. Colic N. Dependency parsing for relation extraction in biomedi-
cal literature [thesis]. Zurich: University of Zurich, 2016.

3. Levy O, Goldberg Y. Dependency-based word embeddings. In: Fi
g.

 8
. I

m
pr

ov
ed

 d
ep

en
de

nc
y

pa
rs

e
(“

sh
or

t/
br

an
ch

ed
 c

ha
in

 a
cy

l-
Co

A
de

hy
dr

og
en

as
e

de
fic

ie
nc

y”
 a

bb
re

vi
at

ed
 fo

r d
isp

la
y)

.

ns
ub

j

cc
co

m
po

un
d

co
nj

pr
ep

po
bj

ap
po

s

Pr
ev

al
en

ce
N

O
U

N
an

d
CC

O
N

J
m

ut
at

io
n

N
O

U
N

an
al

ys
is

N
O

U
N

of AD
P

SB
CC

D
(

N
O

U
N

SB
CA

DD
)

PR
O

PN
de

te
ct

ed
.

VE
RB

Genomics & Informatics 2019;17(2):e21

5 / 6https://doi.org/10.5808/GI.2019.17.2.e21

https://doi.org/10.3115/v1/W15-1506
https://doi.org/10.3115/v1/W15-1506
https://doi.org/10.3115/v1/W15-1506
https://doi.org/10.3115/v1/W15-1506
https://doi.org/10.3115/v1/W15-1506
https://doi.org/10.3115/v1/W15-1506
https://www.cl.uzh.ch/dam/jcr:609b8c4a-5d9f-4e4b-99a9-69355027509d/Master_Thesis_Nicola_Colic.pdf
https://www.cl.uzh.ch/dam/jcr:609b8c4a-5d9f-4e4b-99a9-69355027509d/Master_Thesis_Nicola_Colic.pdf
https://doi.org/10.3115/v1/P14-2050

Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Short Papers) (Toutanova K, Wu H,
eds.), 2014 Jun 23-25, Baltimore, MD, USA. Stroudsburg: Asso-
ciation for Computational Linguistics, 2014. pp. 302-308.

4. Zeman D, Hajic J, Popel M, Potthast M, Straka M, Ginter F, et al.
CoNLL 2018 shared task: multilingual parsing from raw text to
universal dependencies. In: Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text to Universal
Dependencies (Zeman D, Hajic J, Popel M, Straka M, Nivre J,
Ginter F, et al., eds.), 2018 Oct 31-Nov 1, Brussels, Belgium.
Stroudsburg: Association for Computational Linguistics, 2018.
pp. 1-21.

5. Rinaldi F, Dowdall J, Hess M, Kaljurand K, Koitand M, Kahusk
N, et al. Terminology as knowledge in answer extraction. In:
Proceedings of the 6th International Conference on Terminolo-
gy and Knowledge Engineering (TKE 2002) (Melby A, ed.),
2002 Aug 28-30, Nancy, France. Le Chesnay: INRIA, 2002. pp.
107-113.

6. Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C.
Neural architectures for named entity recognition. Ithaca: arXiv,
Cornell University, 2016. Accessed 2019 Apr 2. Available from:
https://arxiv.org/abs/1603.01360.

7. Honnibal M, Johnson M. An improved non-monotonic transi-
tion system for dependency parsing. In: Proceedings of the 2015
Conference on Empirical Methods in Natural Language Pro-
cessing, 2015 Sep 17-21, Lisbon, Portugal. Stroudsburg: Associ-
ation for Computational Linguistics, 2015. pp. 1373-1378.

8. Furrer L, Jancso A, Colic N, Rinaldi F. OGER++: hybrid multi-
type entity recognition. J Cheminform 2019;11:7.

9. Pletscher-Frankild S, Jensen LJ. Design, implementation, and
operation of a rapid, robust named entity recognition web ser-
vice. J Cheminform 2019;11:19.

10. Leaman R, Lu Z. TaggerOne: joint named entity recognition

and normalization with semi-Markov Models. Bioinformatics
2016;32:2839-2846.

11. Choi JD, Tetreault J, Stent A. It depends: dependency parser
comparison using a web-based evaluation tool. In: Proceedings
of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on
Natural Language Processing (Zong C, Strube M, eds.), 2015
Jul 26-31, Beijing, China. Stroudsburg: Association for Compu-
tational Linguistics, 2015. pp. 387-396.

12. Oepen S, Kuhlmann M, Miyao Y, Zeman D, Cinkova S, Flick-
inger D, et al. SemEval 2015 task 18: broad-coverage semantic
dependency parsing. In: Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015) (Nakov P,
Zesch T, Cer D, Jurgens D, eds.), 2015 Jun, Denver, CO, USA.
Stroudsburg: Association for Computational Linguistics, 2015.
pp. 915-926.

13. Dozat T, Manning CD. Deep biaffine attention for neural depen-
dency parsing. Ithaca: arXiv, Cornell University, 2016. Accessed
2019 Apr 2. Available from: https://arxiv.org/abs/1611.01734.

14. Kiperwasser E, Goldberg Y. Simple and accurate dependency
parsing using bidirectional LSTM feature representations. Trans
Assoc Comput Linguist 2016;4:313-327.

15. Yang H, Zhuang T, Zong C. Domain adaptation for syntactic and
semantic dependency parsing using deep belief networks. Trans
Assoc Comput Linguist 2015;3:271-282.

16. Nivre J, de Marneffe MC, Ginter F, Goldberg Y, Hajic J, Manning
CD, et al. Universal dependencies v1: a multilingual treebank
collection. In: Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC 2016)
(Calzolari N, Choukri K, Declerck T, Goggi S, Grobelnik M,
Maegaard B, et al., eds.), 2016 May 23-28, Portoroz, Slovenia.
Paris: European Language Resources Association, 2016. pp.
1659-1666.

https://doi.org/10.5808/GI.2019.17.2.e216 / 6

Colic N et al. • Improving spaCy dependency annotations

https://doi.org/10.3115/v1/P14-2050
https://doi.org/10.3115/v1/P14-2050
https://doi.org/10.3115/v1/P14-2050
https://doi.org/10.3115/v1/P14-2050
https://arxiv.org/abs/1603.01360
https://arxiv.org/abs/1603.01360
https://arxiv.org/abs/1603.01360
https://arxiv.org/abs/1603.01360
https://doi.org/10.18653/v1/D15-1162
https://doi.org/10.18653/v1/D15-1162
https://doi.org/10.18653/v1/D15-1162
https://doi.org/10.18653/v1/D15-1162
https://doi.org/10.18653/v1/D15-1162
https://doi.org/10.1186/s13321-018-0326-3
https://doi.org/10.1186/s13321-018-0326-3
https://doi.org/10.1186/s13321-019-0344-9
https://doi.org/10.1186/s13321-019-0344-9
https://doi.org/10.1186/s13321-019-0344-9
https://doi.org/10.1093/bioinformatics/btw343
https://doi.org/10.1093/bioinformatics/btw343
https://doi.org/10.1093/bioinformatics/btw343
https://doi.org/10.3115/v1/P15-1038
https://doi.org/10.3115/v1/P15-1038
https://doi.org/10.3115/v1/P15-1038
https://doi.org/10.3115/v1/P15-1038
https://doi.org/10.3115/v1/P15-1038
https://doi.org/10.3115/v1/P15-1038
https://doi.org/10.3115/v1/P15-1038
https://doi.org/10.18653/v1/S15-2153
https://doi.org/10.18653/v1/S15-2153
https://doi.org/10.18653/v1/S15-2153
https://doi.org/10.18653/v1/S15-2153
https://doi.org/10.18653/v1/S15-2153
https://doi.org/10.18653/v1/S15-2153
https://doi.org/10.18653/v1/S15-2153
https://arxiv.org/abs/1611.01734
https://arxiv.org/abs/1611.01734
https://arxiv.org/abs/1611.01734
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00138
https://doi.org/10.1162/tacl_a_00138
https://doi.org/10.1162/tacl_a_00138

