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Prediction of the relations among drug and other molecular or social entities is the main 
knowledge discovery pattern for the purpose of drug-related knowledge discovery. Compu-
tational approaches have combined the information from different sources and levels for 
drug-related knowledge discovery, which provides a sophisticated comprehension of the re-
lationship among drugs, targets, diseases, and targeted genes, at the molecular level, or re-
lationships among drugs, usage, side effect, safety, and user preference, at a social level. In 
this research, previous work from the BioNLP community and matrix or matrix decomposi-
tion was reviewed, compared, and concluded, and eventually, the BioNLP open-shared task 
was introduced as a promising case study representing this area. 
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Background of Drug-Related Knowledge Discovery 

Drug-related knowledge discovery is the process of discovering novel drug targets, drug-
side effects, drug-drug interactions (DDIs), drug-disease or drug-indications. The novel 
knowledge discovery has mainly led to better understanding of the molecular bases of drug 
efficacy, and with focus on the application scenario of new drug discovery, drug develop-
ment or drug repurposing [1], i.e., search and replacement of compounds developed for 
specific diseases [2]. Drug discovery is usually initiated by an experimental method or com-
putational method. Experimental methods, either in vivo or in vitro, are more acceptable by 
the clinical community. However, the disadvantages of these methods, such as cost and 
time-consumption, are also obvious. The computational way, also known as in silico meth-
od, is mainly to perform the knowledge discovery under data mining instead of experimen-
tal (“wet lab”) manipulations. Early in 2009, a review in Nature [3] claimed that in silico 
predictions for drug discovery has come of age, and so far, PubMed has collected over 41 
thousand papers about in silico drug knowledge discovery. 

In Silico Methods for Drug Knowledge Discovery 

Generally, in silico methods are a computational way to perform knowledge inference by 
using data mining, with less time-consumption and including machine learning, molecular 
docking, pharmacophore structure, structure-activity relationships (SAR), quantitative 
structure-activity relationship (QSAR), and combination methods. Drug-knowledge dis-
covery with in silico methods mainly identified core molecular entities, including genes, 
proteins, therapeutic compounds, and other “omics” information and henceforth, to explore 
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the novel link between them [4]. Though chemoinformatics meth-
ods, such as SAR or QSAR, have made great success in screening 
chemical libraries, the huge body of candidate chemical compounds 
has led to overload calculation and made these methods far from 
perfect [5]. Thanks to the rapid emergence of deep neural network 
since the early 2010s, deep learning strategies have undoubtedly 
manifested their computational advantage over chemoinformatics 
strategies for drug screening [6], and made it another application 
field of deep neural networks. In the meantime, chemoinformatics 
strategies mainly focused on novel drug-target identification or 
DDIs prediction, instead of drug-side effects or drug-disease pairs. 
With higher odds of success, knowledge discovery tasks of recent 
ones relied heavily on structured knowledge entires came from bio-
informatics-based data base searching or natural language processing 
(NLP)–aided automatical curation. 

In this review, we mainly focus on two typical in silico methods of 
drug-related knowledge discovery. One method is text mining, i.e., 
Biomedical Natural Language Processing (BioNLP). Another one is 
a knowledge discovery method, with low rank approximation of 
drug data with a form of tensors or matrices. As structured knowl-
edge entries were supportive to resolve most drug-related knowl-
edge discovery tasks, NLP methods are regarded as a good addition 
to traditional in silico methods. In addition, the popularization of 
knowledge graphs, in recent years, has dramatically encouraged the 
promising application of knowledge inference in drug-related 
knowledge discovery. Tensors or matrices were treated as natural 
data structures, to contain drug knowledge entries, and tensor or 
matrix decomposition served as a rough approximation of novel link 
discovery. 

Text resources and BioNLP methods for drug-related 
knowledge discovery 
BioNLP is the application of NLP methods to biomedical entities 
such as macromolecules and relation extraction between pro-
tein-protein or drug-drug interactions. As a hyponym word for NLP, 
the definition of BioNLP appeared in the early 1990s [7], when dis-
tributed word representations and applications in BioNLP were in-
troduced. With the fast accumulation of written material of scholarly 
publications and clinical narratives, the BioNLP community, formed 
in the late 1990s and various named entity recognition (NER) tools 
were developed for the purpose of biomedical applications such as 
DDIs, data base curation, ontology design, and so on [1]. 

In this section, we review the development of BioNLP in drug-re-
lated knowledge discovery by categorizing the resources for which 
type of research was performed. Three kinds of text resources, i.e., 
large-scale curation data, small-scale corpora, and heterogeneous 
data, were introduced, as well as drug-related discovery research ap-

proaches based on them. Here, PubMed and OMIM were intro-
duced as two representatives of large-scale curated data, which as a 
tradition served for drug-related knowledge discovery for years; cor-
pora emerged from small-scale data aiming for serving high quality 
text mining upon large text data; and finally, multi-omics data was 
introduced as heterogeneous data. 

Large scale curation data and drug-knowledge discovery in a wide 
range 
Released for the first time in 1996, PubMed has long been the main 
text resources for the BioNLP community to collect references and 
abstracts on life sciences and biomedical topics [8]. 

The 2014 version of PubMed Medline was explored by Yang et al. 
[9] through lexicon filtering and dependency parsing tree establish-
ment. They used trigger word learning to extract relationships be-
tween diseases-genes and genes-drugs, After obtaining 114,381 dis-
ease-gene and 176,219 gene-drug link pairs, an ABC model was ap-
plied to extract the indirect link between disease and gene by consid-
ering disease-gene as A-B and gene-drug as B-C. 

NER tools were developed, as well, among the BioNLP commu-
nity, among dozens of popularized NER tools, including tmChem 
[10], DNorm [11], GNormPlus [12], and tmVar [13]. These were 
regarded as successful representative tools for recognizing chemicals, 
diseases, genes, and variations. 

In the meantime, emergence of deep learning strategies in NLP 
propelled bio-NER dramatically, by introducing novel and sophisti-
cated deep neural network training models, in the manner of classifi-
er and word embedding. First, deep learning brought a new genera-
tion of neural networks as an effective classifier, i.e., long short-term 
memory (LSTM) neural networks; Second, deep learning intro-
duced semantics consideration, like word embedding, as input, and 
enhanced the NER algorithms. For example, Habibi et al.’s work 
[14] was typical, which fully made use of CRF, LSTM, and word 
embedding, to extract entities including drugs from text, and the re-
sults of this work indicated that deep-learning methods performed 
better than other biomedical NER methods. The attempts of BioN-
LP community made the massive bioentity information retrieval 
more accessible. 

As a user-friendly platform run by NCBI, PubTator [15] timely 
offered the PubMed-scale NER service to tag the above entities. By 
integrating the tagged entities of PubTator into the Stanford parsing 
tree, Percha and Altman [16] grouped PubMed sentences into se-
mantically-related categories, to provide relations between entities 
and pairs, for each sentence. For instance, six groups of gene-chemi-
cal pairs were carefully defined in this work, i.e., drug target, metabo-
lism, transport, inhibition, agonism, and antagonism. Finally, sophis-
ticated semantic relations were mined out, such as DDIs, and varia-
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tions in drug responses. 
Except PubMed, there were several text resources serving for 

drug-related knowledge discovery. Online Mendelian Inheritance 
in Man (OMIM, https://www.omim.org) [17] for drug mecha-
nism, and ClinicalTrails.gov (https://www.clinicaltrials.gov) for 
drug usage. 

OMIM, a popular knowledge base of human genes and genetic 
disorders, offers enriched text sets for addressing phenotypes of mu-
tated genes. Wang and Zhang [18] manually curated the functional 
change mutations type, i.e., loss of function (LOF) and gain of func-
tion (GOF) mutations. It was stated that LOF and GOF recognition 
worked for novel drug discovery, in terms of core gene function 
change. Wang and Zhang [18] hypothesized that the “antagonist” 
chemical maps to a targeted gene with GOF, while another “agonist” 
chemical mapped to the gene with LOF. This hypothesis offered a 
straightforward rule for gene-drug pair filtering. Zhang et al. [19] 
employed OMIM and PubMed to gather GOF and LOF knowl-
edge on the pathogenesis of antidiabetic targets, finding nine drugs 
for treating diabetes. 

Besides PubMed text resources for published papers, and OMIM 
for curated heredity-centric knowledge text, ClinicalTrails.gov is a 
representative of an electronic health record (EHR) text resource, 
which was established in 1999 [20]. ClinicalTrails.gov contains vari-
ous information about medical clinical studies in humans, and the 
open access policy made it widely used. For example, Su and Sanger 
[21] extracted serious adverse events (SEAs) data from the text in 
ClinicalTrials.gov, and ranked drugs by SEAs data, to find those with 
the least SEAs. Then, new drugs could be predicted according to 
their SEAs. For example, Xu et al. [22] extracted gene alterations 
and identified cancer treatment trials by developing a semi-automat-
ic framework on documents at CliniclaTrails.gov. In this research, 
they used three steps including: collect candidate trials about cancer 
treatment trials, score each candidate trials, and manually review tri-
als with lower scores. 

EHR data is a popular source information of clinical and transna-
tional research for drug repurposing. Banda et al. [23] used four 
sources information from EHRs including public database, source 
of spontaneous reports, literature and non-EHRs DDIs predication 
methods to prioritize drug- drug-event association. It should be not-
ed that the abundant clinical information in EHR data made it possi-
ble to serve for various precisional medical discovery. Denny et al.’s 
PheWAS [24] combined long temporal scale EHR data with ge-
nomics variation information, and proposed phenome-wide associ-
ation study to trace core single nucleotide polymorphisms and dis-
ease trajectory. The emerging cross disciplinary research based on 
EHR as well propelled the research issues from Medical Natural 
Language Processing (MedNLP) [25,26]. 

In all, the development of large data resource knowledge discov-
ery unveiled the following tendencies: 

(1) PubMed is still the main open access resource for large scale 
resource, meanwhile, lack of other text resources with compa-
rable level and restriction of full text access hinder the develop-
ment of large scale knowledge discovery for bio-text miners. 

(2) After years of development, NER of biomedical entities is not 
technical headache any longer, and make it possible to run 
comprehensive knowledge extraction tasks. 

(3) As a result, a combination of full open access to PubMed-wide 
knowledge discovery and restricted access EHR data access for 
drug knowledge is a main research pat- tern in the next decade. 

Corpora and purposes for drug-related text mining 
Early attempts to apply BioNLP to knowledge discovery was pro-
pelled by the benchmark NLP dataset corpus. A well-structured 
corpus experiences a rigid evaluation procedure that ensures its us-
ability. The steps included annotation guidelines design, annotation 
testing, and inter-annotator agreement computation. 

The pioneer work was the corpus used in DDIs of DDI 2011 [27], 
DDI 2013 extraction challenge [28], and SemEval 2013 task 9 [29]. 
In early attempts, Segura-Bedmar et al. [27] used POS-tagging, lem-
matization, and chunking as features of a shallow linguistic kernel 
method, to perform DDI extraction. To that end, Bui et al. [30] was 
among dozens of researchers that attended the DDI challenge, 
which manually created 292 relevant trigger words, converted sen-
tences into semantic structures, extracted and fed features into a 
known classifier support vector machine (SVM) for DDI extraction. 
Afterward, Kim et al. [31] used SVMs, as well as performing DDI 
2013 challenge, but with richly combined features, including word 
features, word pair features, dependency graph features, and parse 
tree features. 

Corpora design, and its applications, gradually played substantial 
roles in drug-related knowledge discovery. In 2016, for the purpose 
of oncology knowledge discovery, Lee et al. [32] created a cancer 
and antitumor Biomedical entity Relation ONcology COrpus 
(BRONCO), which focused on the variant-centric entities includ-
ing genes, diseases, drugs, and cell lines. Although BRONCO was a 
disease-oriented corpus, it focused on drugs, and Lee et al. [33] used 
this corpus to evaluate and develop a mutation-gene-drug discovery 
pipeline. 

Focus on adverse reactions (ADRs) or side effects on drugs has 
attracted the attention of corpus designers. In that regard, Fang et al. 
[34] illustrated proper terminology discrimination upon ADR cor-
pus design. A recent ADR-oriented corpus was created by an NCBI 
team Demner-Fushman et al. [35], i.e., Text Analysis Conference 
(TAC) 2017 drug labels corpus, which annotated labels of two hun-
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dred Food and Drug Administration approved drugs. The men-
tioned topics they annotated covered “severity,” “drug class,” “adverse 
reaction,” etc., which were fairly usable for ADR evaluation of drugs. 
ADR extraction was among the successfully held tasks of TAC 2017 
and 2018 [36], and afterwards the same NCBI team constructed 
MEDIQA challenge, an Association for Computational Linguistics–
community challenge for the question entailment of medical records 
[37] which expanded the drug-related ADR extraction to wider 
clinical scenarios, also known as MedNLP. 

Another focus on drug-related corpus construction is on drug re-
purposing. Until now, the corpus working on drug repurposing was 
rare. Recent progress came from Wang et al.’s work [38], which de-
signed an “active gene annotation corpus (AGAC)” to cultivate 
functional change of mutated genes. AGAC aimed to capture LOF- 
or GOF-mutated genes, and made it possible to find “agonist vs. 
LOF” and “antagonist vs. GOF” pairs for “drug vs. gene.” This was a 
nice addition to a mutation-centric corpus for the purpose of drug 
repurposing [38]. 

The development of drug-oriented corpora design showed clear 
tendency as below. 

(1) DDIs were a key focus in corpora design, and the DDI corpus 
has long been a tradition in drug-related corpus construction. 

(2) Disease-oriented corpora covered drug- related knowledge cu-
ration, which served directly to specific disease and focused on 
tumors as targets. 

(3) Drug-related ADR or side effect information was a focus in 
corpora design which served for drug effect, and as well led to 
expanded attention in medical and clinical applications. 

(4) Mutation-centric corpus was a novel addition to the drug-relat-
ed corpora, which was aimed to the application of drug repur-
posing. 

Heterogeneous data for drug-related knowledge discovery 
Unlike traditional text data, heterogeneous data is generally non-sci-
entific text, like so cial media and various omics data, including ge-
nomic or proteomic data. While the non-scientific text enhanced re-
search studies, with social concerns such as drug abuse, drug misuse, 
and drug safety, the various omics data achieved success under the 
collaboration of BioNLP and bioinformatics community. 

Just like Twitter served well for drug prescription and drug abuse 
[39], social media allowed fast tracking of public opinion, and be-
came popular resources for adverse drug reaction mining [40,41], 
drug misuse [42], drug safety [43], etc. It was worth noting that so-
cial media texts were mainly integrated into research with social issue 
topics, instead of drug knowledge in the molecular level. 

With emergence of multi-omics data, the integration of text data 
with genome, or protome data attracted attention from a cross disci-

plinary view, for the purpose of drug-gene linking discovery. Early 
attempts of linking chemical to candidate genes was performed in 
late 2000s by Li et al. [44], who showed a significant combination of 
traditional bioinformatics and BioNLP approaches. This study used 
Online Predicted Human Interaction Database (OPHID), a predict-
ed protein association network database, to obtain protein networks 
of Alzheimer disease, retrieved from disease-drug-protein links from 
PubMed, and formed a reliable connectivity map. 

In most cases, multi-omics data integration led to indirect link dis-
covery between drugs and their targeted proteins or candidate loci. 
Zhang et al. [45] obtained a colorectal cancer-related gene list by 
text mining from PubMed and then integrated genomics data and 
proteomics data to identify the more risky loci associated with col-
orectal cancer. Barupal et al. [46] investigated metabolic genes as 
therapeutic targets in breast tumors by using multi-omics data and 
text mining. Meanwhile, Long et al. [47] identified and validated 
oncogenic biomarkers of pancreatic cancer, through integrative text 
mining and omics-based translational modelling. Such progress also 
reflects the mainstream data fusion research idea within the bioin-
formatics community. 

To conclude, the availability of the heterogeneous data propelled 
drug-related knowledge discovery both in social and bioinformatics 
domains. 

(1) Social media data became an exclusively important resources 
for collecting public opinion, helping to resolve several drug-re-
lated topics, such as drug safety, drug usage, or drug side effects. 

(2) Integration of text data with multi-omics data became a ten-
dency upon drug-gene linking or therapeutic target. 

discovery, and huge text data was regarded as one member of om-
ics data from the view of the bioinformatics community. 

Matrix or tensor decomposition methods for drug-related 
knowledge discovery 
Matrix factorization or decomposition are important techniques for 
extracting information from a matrix or a tensor [48]. Basically, a 
matrix A∈ Rm × n refers to a m ×  n data array, which is suitable for 
storing and linking two entities. Meanwhile, an M-way tensor Rn1 × n2 

× ··· × nM provides a higher ordered structure, which is capable of stor-
ing M different kinds of entities. The computational decomposition 
(sometimes called factorization) result of a matrix or a tensor led to a 
so-called low rank approximation of the original structure, and made 
a basis for novel link discovery. 

If compared with great amount and various patterns of BioNLP 
research on drug-related knowledge discovery, the research of matrix 
or tensor decomposition was comparatively less, and more top-
ic-specific. In general, the adaptable data structure made it possible 
to illustrate higher order links, while the lower rank approximation 
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made it a suitable one for novel link discovery. A comprehensive re-
view of mathematical illustration of the matrix decomposition (“also 
known as matrix factorization”) by Wang and Zhang’s work [49] 
listed basic notations, definitions and detailed ideas, while Kolda 
and Bader [50] provided another one for tensor decomposition, in-
cluding the classic CANDE-COMP/PARAFAC (CP) and Tucker 
decomposition. To trace the rapid development of knowledge infer-
ence in the years of knowledge graph, Nickel et al.’s RESCAL algo-
rithm [51] made good use of tensor structure for triple knowledge. 
In addition, Nimishakavi’s series work on higher order relation sche-
ma [52,53], and side information integration, were representative is-
sues in higher order link discovery and multi-resource data fusion. 
Since this review is mainly for concluding research on drug-related 
knowledge discovery, the following section reviews the matrix and 
tensor level decomposition and applications on drug, respectively. 

Matrix decomposition method 
Matrix decomposition obtains a sum of lower-rank matrices, and 
then models a small number of factors [54]. A matrix decomposition 
models known associations, which predicts novel drug indications. 

In 2013, Zheng et al. [55] predicted new drug-target interactions 
by using collaborative matrix factorization. In their work, three dif-
ferent datasets, such as drug-target interactions, DDIs, and target-tar-
get interactions were input to build three matrices. After matrix fac-
torization, two low-rank matrices were obtained, which approximate 
to the known drug-target interaction matrix, and novel relationship 
predictions were able to perform by the new number in the approxi-
mate matrix. In this research, three kinds of data such as drug-target 
interaction, drug similarity, and target similarity were input into the 
three matrices separately. 

Similarly, Liu et al.’s work [56] presented an integrated framework 
to create new therapeutic associations between drug-drug, drug-dis-
ease, and disease-disease by matrix decomposition. Zhang et al. [57] 
proposed two projections including low-dimensional drug projec-
tion and disease projection matrix, and utilized them to factorize the 
drug-disease matrix. Dai et al. [58] used three interaction data, in-
cluding drug-disease, disease-gene, and drug-gene interactions, to 
predict drug-disease association. In their work, they clustered genes 
by using gene-drug interactions and gene-disease interactions, re-
spectively, and two different clustering results consisted of two axes 
of matrix. After matrix factorization, the novel relations between the 
clusters were predicted. Through tracing backing to the correspond-
ing disease and drug of the clusters, newly drug-disease relations 
were obtained. 

Tensor decomposition method 
Tensor decomposition appeared early in 1927 [59] and emerged 

into computer science applications in the 2000s. Tensors incorpo-
rate a multidimensional array of numerical data and are applied to 
various machine-learning tasks [48]. Similar to matrix factorization, 
tensor decomposition extracted a low rank approximation of drug 
data, while withholding more complex data structure. To that end, 
Ho et al. [60] utilized tensor decomposition, in an unsupervised 
manner, for EHR data, and extracted candidate phenotype genera-
tion through checking interactions of diagnoses and drugs among 
patients. Arany et al. [61] similarly used tensor decomposition to in-
fer drug-protein interaction types: competitive or non-competitive. 
This was a novel idea in this research to design a 3-way tensor with 
cell ijk represented inhibition of the j-th protein with i-th drug for 
the k-th given inhibition measure, and to decompose the tensor by 
using side information of chemical features. 

Basically, it was a natural idea to incorporate various drug-related 
information into the axes of a tensor, and achieve an imaginary 
knowledge structure. Khan et al. [62] proposed structural toxicog-
enomics complex tensors by creating structure matrices with drugs 
and structural descriptors, respectively, a gene tensor for diseases, 
and post-treatment gene expression, and a toxicity tensor with drug 
toxicity measurements. Decomposition of the complex tensors led 
to predictions of toxicity of unseen drugs. Afterward, Taguchi et al. 
[4] performed a series of studies on identified candidate drugs, espe-
cially drugs for heart failure [63], by integrating gene expression data 
into a tensor decomposition model. Unlike linking drug-protein, 
drug-toxicity, or drug-disease pairs, linking drug-consumer led to 
different applications, like drug recommendations. Wang et al. [64] 
likewise designed a 3-way tensor with “user,” “drug” and “label,” and 
constructed a precise drug recommendation model. 

The above methods mainly fulfilled tensor axes with various 
drug-related domain data like gene expression or chemical features, 
and then a novel link discovery was mined out from the decom-
posed tensor. Meanwhile, a hybrid strategy of BioNLP and tensor 
decompostion came from Zhou et al. [65], who used AGAC corpus 
[38] as a training set to perform OMIM-wide text mining, and pre-
dict novel higher order links among five entities, including genes, 
mutations, functions, diseases, and functional changes. In this work, 
new nonzero cells in the decomposed tensors were treated as novel 
links, among five entities, and infer the functional change of a mutat-
ed gene. Finally, agonist/antagonist drug information was extracted 
from DrugBank [66], and applied to help linking “agonist vs. LOF” 
and “antagonist vs. GOF” pairs, for the purpose of drug repurposing. 

Research pattern of novel drug-related knowledge link discovery in 
the form of matrix or tensor decomposition 
Among the above research studies, the characteristics of matrix or 
tensor decomposition method enabled investigators to input multi-

Genomics & Informatics 2019;17(2):e18

5 / 10https://doi.org/10.5808/GI.2019.17.2.e18



ple data, and thus provide more comprehensive information for pre-
diction, which may elevate knowledge prediction accuracy. The re-
search tendency of matrix or tensor decomposition on drug-related 
knowledge discovery is listed below. 

(1) Matrix or Tensors are natural data structures to contain multi-
ple arrays of drug-related entries. Paired knowledge entries are 
mapped into a matrix element, such as a drug-target, drug-drug 
pair, while three linked entities are mapped into a cell in tensor, 
such as “drug”, “user,” and “label,” in drug recommendations. 
Furthermore, higher order links are mapped into higher order 
tensors. 

(2) Generally, novel link discovery is inferred from the novel non-
zero cells in the decomposed matrix or tensor. Methods differ 
according to the chosen decomposition algorithm. For exam-
ple, a new link is inferred from a core tensor after decomposi-
tion in a RESCAL-based tensor decomposition, while a non-
zero cell in the approximated tensor counts as a novel link in a 
CP decomposition. 

(3) Three way tensors were the most popular choice in the knowl-
edge inference applications. As shown in Fig. 1, a 3-way tensor 
is favored more in a triple data structure than that in two matri-
ces, thus making it convenient for high-order link data repre-
sentation. It is straightforward to claim that a M-way tensor can 
provide a natural data structure to store higher-order links 
mentioning M entities. However, the higher the reach of the 
level, the more sparse the tensor is. This creates a computation-
al bottleneck.  

(4) Knowledge inference algorithms such as jointly decomposed 
matrices and tensors, bring the data fusion idea into the matrix 
or tensor decomposition strategy, and make it possible to per-
form a drug-related knowledge discovery, by incorporating 
various kinds of heterogeneous data. 

Conclusion 

Trends in BioNLP and drug-related knowledge discovery 
The goal of drug-related discovery is to find novel knowledge for ex-
tracting drugs, and use the newly identified drugs for disease thera-
py. In this review, we focused on BioNLP and tensor or matrix de-
composition methods to predict novel alternative therapeutic symp-
toms. 

Recent progress in drug-related knowledge discovery led to a cou-
ple of research trends: 

(1) Well-annotated corpora are a core gold standard dataset. An-
notation corpora are crucial to BioNLP, and could help to re-
trieve and extract information from biomedical text, and also 
provide standard data for repeatable training and evaluation of 
BioNLP. 

(2) NER tasks are replaced by more complicated knowledge cura-
tion tasks, in the BioNLP community. Information from text 
can be extracted by BioNLP, which could be the original data 
to find novel knowledge through prediction models. With the 
recent development of PubTator, NER, and term normaliza-
tion, are properly solved, while aiming to curate all of PubMed. 

Fig. 1. Structure of a matrix and a three way tensor.
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(3) The application of BioNLP in drug-related knowledge discov-
ery requires deepened integration of multi-omics data. 
Cross-disciplinary collaboration among BioNLP, MedNLP, 
and bioinformatics communities is a promising approach. 

(4) Knowledge inference, based on tensor or matrix decomposi-
tion, is regarded as a reliable prediction model. The integration 
of algorithms and theorems, developed in knowledge graphs, is 
a promising approach to resolve various drug-related knowl-
edge discoveries. 

BioNLP Open Shared Task: AGAC track 
To encourage cross-disciplinary collaboration from various drug-re-
lated knowledge discoveries, shared tasks have long been a stage to 
gather researchers with different backgrounds, e.g., the series of Bi-
oNLP Shared Task (BioNLP-ST) workshops [67-71]. 

Aiming to gather text mining approaches among the BioNLP 
community to propel drug-oriented knowledge discovery, BioNLP 
Open Shared Task workshop (https://2019.bionlp-ost.org/tasks) 
proposed five sub-tasks (tracks). Among the five tasks, we propose a 
AGAC track (https://sites.google.com/view/bionlp-ost19-agac-
track), for the goal of drug repurposing. 

AGAC track provides an AGAC and aims to extract mutation-dis-
ease knowledge from PubMed. The mutation-disease knowledge in 
this track links gene-mutation-function change to disease, which not 
only contains the relationship between mutation and disease, but 
also indicates the functional change of the mutation, i.e., GOF or 
LOF. One application of this track is to elevate the efficiency of drug 
discovery, since matching drugs with their target mutated genes 
must consider the corresponding of the function change of mutated 
gene and the pharmacological activities of drugs. 

AGAC track contains three different tasks. 
(1) Trigger words NER: This task requires participants to recog-

nize trigger words from PubMed abstracts, and annotate them 
with their corresponding AGAC labels or entities (Var, MPA, 
Interaction, Pathway, CPA, Reg, PosReg, NegReg, Disease, 
Gene, Protein, and Enzyme). 

(2) Themetic roles identiftcation: Identification of AGAC themet-
ic roles (e.g., Theme Of, Cause Of), between trigger words.  

(3) Gene-function mutation-disease link discovery: Extract the 
gene-(mutation)-function change-biology function or disease 
link. For example, “Mutations in SHP-2 phosphatase that cause 
hyperactivation of its catalytic activity have been identified in 
human leukemias, particularly juvenile myelomonocytic leuke-
mia.” From this sentence, the participants need to extract 
(SHP-2–GOF–juvenile myelomonocytic leukemia). 

The baseline methods for task 1 or 2 was performed in Zhou et 
al.’s work [65], while the “agonist vs. LOF” and “antagonist vs. GOF” 

hypothesis for the support of drug repurposing was proposed in 
Wang and Zhang’s work [18]. The development of the AGAC cor-
pus [38] laid the basis for the data availability, while PubAnnotation 
[72] served as the evaluation platform. 
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