References
- Krallinger M, Rabal O, Lourenco A, Oyarzabal J, Valencia A. Information retrieval and text mining technologies for chemistry. Chem Rev 2017;117:7673-7761. https://doi.org/10.1021/acs.chemrev.6b00851
- Yadav V, Bethard S. A survey on recent advances in named entity recognition from deep learning models. In: Proceedings of the 27th International Conference on Computational Linguistics (Bender EM, Derczynski L, Isabelle P, eds.), 2018 Aug 20-26, Santa Fe, New Mexico, USA. Stroudsburg: Association for Computational Linguistics, 2018. pp. 2145-2158.
- Kleinberg B, Mozes M, van der Toolen Y, Verschuere B. NEMANOS: named entity-based text anonymization for open science. OSF Preprints 2017 Jun 4 [Epub]. https://doi.org/10.31219/osf.io/w9nhb.
- Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. Ithaca: arXiv, Cornell University, 2013. Accessed 2019 May 1. Available from: http://arxiv.org/abs/1301.3781.
- Dernoncourt F, Lee JY, Szolovits P. NeuroNER: an easy-to-use program for named-entity recognition based on neural networks. Ithaca: arXiv, Cornell University, 2017. Accessed 2019 May 1. Available from: http://arxiv.org/abs/1705.05487.
- Krallinger M, Leitner F, Rabal O, Vazquez M, Oyarzabal J, Valencia A. CHEMDNER: the drugs and chemical names extraction challenge. J Cheminform 2015;7:S1. https://doi.org/10.1186/1758-2946-7-S1-S1
- Hawizy L, Jessop DM, Adams N, Murray-Rust P. ChemicalTagger: a tool for semantic text-mining in chemistry. J Cheminform 2011;3:17. https://doi.org/10.1186/1758-2946-3-17
- Usie A, Cruz J, Comas J, Solsona F, Alves R. CheNER: a tool for the identification of chemical entities and their classes in biomedical literature. J Cheminform 2015;7:S15. https://doi.org/10.1186/1758-2946-7-S1-S15
- Liu S, Tang B, Chen Q, Wang X. Drug name recognition: approaches and resources. Information 2015;6:790-810. https://doi.org/10.3390/info6040790
- Segura-Bedmar I, Martinez P, Segura-Bedmar M. Drug name recognition and classification in biomedical texts. A case study outlining approaches underpinning automated systems. Drug Discov Today 2008;13:816-823. https://doi.org/10.1016/j.drudis.2008.06.001
- Vazquez M, Krallinger M, Leitner F, Valencia A. Text mining for drugs and chemical compounds: methods, tools and applications. Mol Inform 2011;30:506-519. https://doi.org/10.1002/minf.201100005
- Ho-Dac LM, Tanguy L, Grauby C, Mby AH, Malosse J, Riviere L, et al. LITL at CLEF eHealth2016: recognizing entities in French biomedical documents. In: CLEF eHealth 2016 (Balog K, Cappellato L, Ferro N, Macdonald C, eds.), 2016 Sep 5-8, Evora, Portugal. hal-0136592. pp. 81-93.
- Lipton ZC, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning. Ithaca: arXiv, Cornell University, 2015. Accessed 2019 May 1. Available from: http:// arxiv.org/abs/1506.00019.
- Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9:1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Dernoncourt F, Lee JY, Uzuner O, Szolovits P. De-identification of patient notes with recurrent neural networks. J Am Med Inform Assoc 2017;24:596-606. https://doi.org/10.1093/jamia/ocw156
- Padro L, Stanilovsky E. FreeLing 3.0: towards wider multilinguality. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC 2012) (Calzolari N, Choukri K, Declerck T, Dogan MU, Maegaard B, Mariani J, et al., eds.), 2012 May 21-27, Istanbul, Turkey. Paris: European Language Resources Association, 2012. pp. 2473-2479.