DOI QR코드

DOI QR Code

Optical Phase Properties of Small Numbers of Nanoslits and an Application for Higher-efficiency Fresnel Zone Plates

  • Kim, Hyuntai (Department of Electronic & Electrical Convergence Engineering, Hongik University) ;
  • Lee, Seung-Yeol (School of Electronics Engineering, Kyungpook National University)
  • 투고 : 2019.04.10
  • 심사 : 2019.06.14
  • 발행 : 2019.08.25

초록

We have studied the behavior of light in the intermediate regime between a single nanoslit and an infinite nanoslit array. We first calculated the optical characteristics of a small number of nanoslits using finite element numerical analysis. The phase variance of the proposed nanoslit model shows a gradual phase shift between a single nanoslit and ideal nanoslit array, which stabilizes before the total array length becomes ${\sim}0.5{\lambda}$. Next, we designed a transmission-enhanced Fresnel zone plate by applying the phase characteristics from the small-number nanoslit model. The virtual-point-source method suggests that the proposed Fresnel zone plate with phase-invariant nanoslits achieves 2.34x higher transmission efficiency than a conventional Fresnel zone plate. Our report describes the intermediate behaviors of a nanoslit array, which could also benefit subwavelength metallic structure research of metasurfaces.

키워드

KGHHD@_2019_v3n4_285_f0001.png 이미지

FIG. 1. (a) Schematic of a single nanoslit, the intermediate zone, and an infinite nanoslit array. (b) Parameter descriptions and simulation conditions of the nanoslit array.

KGHHD@_2019_v3n4_285_f0002.png 이미지

FIG. 2. Optical phase shift vs. number of slits when (a) varying duty cycle and (b) varying thickness. The phase-invariant conditions are marked by thick black lines.

KGHHD@_2019_v3n4_285_f0003.png 이미지

FIG. 3. Phase shift vs. number of slits for various slit widths at duty cycles of (a) 0.7 and (b) 0.3. Phase shift vs. period and total array length at duty cycles of (c) 0.7 and (d) 0.3. The phase-invariant conditions are marked by a thick black line in Fig. 3(b) and a dashed red line in Fig. 3(d).

KGHHD@_2019_v3n4_285_f0004.png 이미지

FIG. 4. Plate design mechanism of the TE-MFZP based on virtual point source.

KGHHD@_2019_v3n4_285_f0005.png 이미지

FIG. 5. Field intensity of (a) the conventional MFZP and (b) the TE-MFZP. Cross-sections of the field intensity (c) perpendicular and (d) parallel to the propagation axis for an x-polarized input beam.

참고문헌

  1. M. L. Brongersma and P. G. Kik, Surface plasmon nanophotonics (Springer, Dordrecht, 2007).
  2. H. Lan and Y. Ding, "Nanoimprint lithography," in Lithography, M. Wang. ed. (InTechOpen, London, UK, 2010), pp. 457-494.
  3. H. Kim, "Plasmonics on optical fiber platforms," in Plasmonics, T. Gric. ed. (IntechOpen, London, UK, 2018), Chapter 10.
  4. F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, "Hybrid bilayer plasmonic metasurface efficiently manipulates visible light," Sci. Adv. 2, e1501168 (2016). https://doi.org/10.1126/sciadv.1501168
  5. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science 345, 298-302 (2014). https://doi.org/10.1126/science.1253213
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). https://doi.org/10.1126/science.1133628
  7. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and engineering explorations (John Wiley & Sons, US, 2006).
  8. P. R. West, J. L. Stewart, A. V. Kildishev, V. M. Shalaev, V. V. Shkunov, F. Strohkendl, Y. A. Zakharenkov, R. K. Dodds, and R. Byren, "All-dielectric subwavelength metasurface focusing lens," Opt. Express 22, 26212-26221 (2014). https://doi.org/10.1364/OE.22.026212
  9. S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, "Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces," Nano Lett. 16, 5426-5432 (2016). https://doi.org/10.1021/acs.nanolett.6b01816
  10. E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light: Sci. Appl. 3, e167 (2014). https://doi.org/10.1038/lsa.2014.48
  11. X. Yi, P. Huang, X. Huang, Z. Xu, C. Zhang, J. Zhao, X. Liu, Y. Ai, and H. Chen, "Operation of polarization order of vector beams with cascaded metasurfaces," Appl. Phys. B 123, 243 (2017).
  12. N. Nookala, J. Xu, O. Wolf, S. March, R. Sarma, S. Bank, J. Klem, I. Brener, and M. Belkin, "Mid-infrared second-harmonic generation in ultra-thin plasmonic metasurfaces without a full-metal backplane," Appl. Phys. B 124, 132 (2018).
  13. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, "Ultra-thin, planar, Babinet-inverted plasmonic metalenses," Light: Sci. Appl. 2, e72 (2013). https://doi.org/10.1038/lsa.2013.28
  14. S.-Y. Lee, K. Kim, G.-Y. Lee, and B. Lee, "Polarization-multiplexed plasmonic phase generation with distributed nanoslits," Opt. Express 23, 15598-15607 (2015). https://doi.org/10.1364/OE.23.015598
  15. H. Kim, J. Kim, H. An, Y. Lee, G.-y. Lee, J. Na, K. Park, S. Lee, S.-Y. Lee, B. Lee, and Y. Jeong, "Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light," Opt. Express 25, 30290-30303 (2017). https://doi.org/10.1364/OE.25.030290
  16. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science 352, 1190-1194 (2016). https://doi.org/10.1126/science.aaf6644
  17. E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, "A super-oscillatory lens optical microscope for subwavelength imaging," Nat. Mater. 11, 432-435 (2012). https://doi.org/10.1038/nmat3280
  18. C. Choi, S.-J. Kim, J.-G. Yun, J. Sung, S.-Y. Lee, and B. Lee, "Deflection angle switching with a metasurface based on phase-change nanorods," Chin. Opt. Lett. 16, 050009 (2018). https://doi.org/10.3788/COL201816.050009
  19. J. Kim, H. Kim, G.-Y. Lee, J. Kim, B. Lee, and Y. Jeong, "Numerical and experimental study on multi-focal metallic Fresnel zone plates designed by the phase selection rule via virtual point sources," Appl. Sci. 8, 449 (2018). https://doi.org/10.3390/app8030449
  20. C. W. Haggans, L. Li, and R. K. Kostuk, "Effective-medium theory of zeroth-order lamellar gratings in conical mountings," J. Opt. Soc. Am. A 10, 2217-2225 (1993). https://doi.org/10.1364/JOSAA.10.002217
  21. Y. Jeong, L. A. Vazquez-Zuniga, S. J. Lee, G. Choi, Y. Kwon, and H. Kim, "High-power fiber lasers," in Proc. 2012 17th Opto-Electronics and Communications Conference, (Korea, Jul. 2012), pp. 580-581.
  22. H. Kim and Y. Jeong, "Theoretical and numerical study of cylindrical-vector-mode radiation characteristics in periodic metallic annular slits and their applications," Curr. Opt. Photon. 2, 482-487 (2018). https://doi.org/10.3807/COPP.2018.2.5.482
  23. J. Kim, J. Kim, J. Na, and Y. Jeong, "Numerical study of a novel bi-focal metallic fresnel zone plate having shallow depth-of-field characteristics," Curr. Opt. Photon. 2, 147-152 (2018). https://doi.org/10.3807/COPP.2018.2.2.147
  24. H. Kim, "Metallic triangular pillar grating arrays for high transmission polarizers for air:glass interfaces," Jpn. J. Appl. Phys. 58, 042001 (2019). https://doi.org/10.7567/1347-4065/ab0274
  25. N. T. Trung, D. Lee, H. K. Sung, and S. Lim, "Angle-and polarization-insensitive metamaterial absorber based on vertical and horizontal symmetric slotted sectors," Appl Opt. 55, 8301-8307 (2016). https://doi.org/10.1364/AO.55.008301
  26. S.-Y. Lee, "Design of a plasmonic switch using ultrathin chalcogenide phase-change material," Curr. Opt. Photon. 1, 239-246 (2017). https://doi.org/10.3807/COPP.2017.1.3.239