
- 275 -

Current Optics and Photonics Vol. 3, No. 4, August 2019, pp. 275-284

ISSN: 2508-7266(Print) / ISSN: 2508-7274(Online) DOI: https://doi.org/10.3807/COPP.2019.3.4.275
Invited Paper 

(Review)

I. INTRODUCTION

Chirality, the asymmetry between mirror images also 

known as enantiomers, is universally observed in nature. 

The study of chiral phenomena has been a critical issue in 

physics, biology, and chemistry because of the theoretical 

importance as shown in weak interactions between fermions 

[1] and the practical applications using the handedness of 

physical objects such as chemical reactions between 

enantiomers [2]. Chirality has also played a critical role in 

photonics after the discovery of optical rotation by Arago 

in 1811 [3]. The well-accepted definition of chirality in 

photonics is the differentiated responses of “optical polari-

zation enantiomers” [4, 5], which depict right- (R-) and 

left- (L-) circular polarizations (CPs) that correspond to the 

spin angular momentum (SAM) of photons. Traditional 

chiral responses of light include (i) CP-differentiated phase 

velocities inside three-dimensional (3D) chiral materials [6], 

and (ii) CP-differentiated optical absorption through 2D 

chiral materials, also known as circular dichroism [7]. 

This optical chirality has been the foundation of various 

functionalities both in classical optics and nanophotonics, 

such as optical sensing of enantiomers [8], negative 

refractions [9], control and utilization of photonic angular 

momenta [10], photonic topological insulators [11], and 

plasmonic color generations [12].

Recent progress in the emerging field of non-Hermitian 

photonics [13-22] inspired by the concept of parity-time 

(PT) symmetry [23, 24] has provided a new perspective on 

optical chirality. Since the discovery of real spectra in PT- 

symmetric potentials despite their non-Hermitian Hamiltonians 

[23, 24], non-Hermitian photonics that explores photonic 

systems composed of gain and loss media has attracted 

much attention, focusing on the classical simulation of 

PT-symmetric quantum systems [25, 26] and the application 

of PT-symmetric phenomena to photonic devices [27-29]. 
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Most intriguing phenomena in non-Hermitian photonic 

systems are observed near the exceptional point (EP) [15], 

which indicates the transition between real and complex 

eigenvalues and the coalescence of eigenmodes. In 

particular, as first described by Heiss et al. [30-33], the 

chirality observed in the EP is not the platform-specific 

phenomenon, such as the mixing of electric and magnetic 

responses in traditional optical chirality [6], but it is the 

general symmetry-protected phenomenon in a non-Hermitian 

system. This platform-invariant nature of EP-induced chirality 

inspired the extension of the definition of optical chirality to 

physical quantities other than polarizations: orbital angular 

momentum (OAM) for structured light, canonical momentum 

for wave propagation, and the trajectory of optical states in 

a system parameter space. Although several recent articles 

have reviewed the significant milestones in non-Hermitian 

photonics [13-17], a comprehensive review of chiral 

phenomena in non-Hermitian photonics is still lacking.

In this review, we introduce recent achievements in non- 

Hermitian photonics and related fields that have provided 

a new path to wave chirality, in particular, focusing on 

practical device applications. We discuss the observation of 

chirality in different physical domains (Fig. 1): the traditional 

polarization domain for the SAM of light (Section II), beam 

wavefront for the OAM of light (Section III), propagation 

direction defined by canonical momentum (Section IV), and 

state evolution in the geometry of a material parameter 

space (Section V), which can also be classified by chirality 

for real-space quantities (Sections II-IV) and abstract system 

parameters (Section V). We show that a novel degree of 

freedom obtained by extending the scope of optical chirality 

to complex potentials has enabled the realization of a 

“singular handedness material” for various quantities of 

light, achieving universal light polarizers, structured light 

lasing, and directional photonic devices.

II. CHIRAL POLARIZATIONS

Since the discovery of PT symmetry by Bender [23], 

this symmetry has been well accepted as an important 

theoretical tool for achieving real eigenvalues in complex 

potentials with non-Hermitian Hamiltonians. PT-symmetric 

potentials also support regimes in which some eigenvalues 

are complex, but the most intriguing phenomena occur 

near the transition point between real and complex phases, 

which is called the EP [15]. One of the fascinating 

features of the EP is the chirality of eigenmodes observed 

by Heiss [30, 31]. To illustrate this novel type of chirality 

in non-Hermitian systems, we start from a simple two-level 

PT-symmetric system, which describes weakly coupled 

elements that directly correspond to the polarization space 

with two degrees of freedom, for example, x- and y-linear 

polarizations. The system is described by the following 2D 

equation [25, 26, 34]:
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where Vr and Vi are the real and imaginary parts of the 

on-site potentials, respectively, κ is the real-valued coupling 

between two states with the convention of κ > 0, ψG,L denotes 

the field of each element, and ξ represents the physical 

axis for the state evolution, which can be a time (t) or 

spatial axis (z). The steady-state solution with dΨ/dξ = -iγΨ 

for Ψ = (ψG,ψL)
T then leads to complex eigenvalues γ1,2 and 

the corresponding eigenmode v1,2, as
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At the EP (κ = Vi) that determines the transition between 

real and complex eigenvalues across γ1 = γ2 = Vr, Eqs. (2) 

and (3) show that the coalesced eigenmode ν1 = ν2 has the 

chiral form of (1, -i)T. The given 2D non-Hermitian system 

is thus chiral at the EP because the system possesses only 

a single eigenmode with the chiral form (1, -i)T, showing 

broken mirror symmetry. We also note that the non-Hermitian 

system at the EP has a geometric multiplicity of 1, which 

represents a reduction in the system dimensionality.

FIG. 1. Chirality in different physical domains of non- 

Hermitian photonics. For the optical field, E = eA(r,R)exp 

(iωt - ik(R) · r), where R is the system parameter vector and 

r is the position vector, the extended definition of optical 

chirality in non-Hermitian photonics can be classified 

according to each physical quantity: polarization e for SAM, 

wavefront A(r,R) for OAM, canonical momentum k(R) for 

wave propagation, and the geometry of state evolution in 

the system parameter space R. The system parameter R 

represents the complex optical potential that determines the 

condition of PT symmetry, including on-site and hopping 

constants defined by structural and material parameters.



Chirality in Non-Hermitian Photonics - Sunkyu Yu et al. 277

Because of the platform-transparent form of Eq. (1), the 

described chirality protected by PT symmetry is universally 

accessible in any non-Hermitian system with two basis 

vectors, such as the polarization domain. The emergence of 

PT-symmetry-protected chirality is described in Figs. 2(a)~ 

2(e) [35, 36], showing the evolution of the eigenpolarization 

states according to the phase of PT symmetry. As shown, 

the PT-symmetric system can possess a singular handedness 

polarization at the EP that corresponds to the pure SAM 

(Fig. 2(c)) when compared to two elliptic nonorthogonal 

polarizations in non-Hermitian potentials around the EP 

(Figs. 2(b), 2(d), 2(e)) and two orthogonal polarizations in 

Hermitian potentials (Fig. 2(a)). Due to the low dimensionality 

with the singular existence of a chiral eigenmode, the given 

PT-symmetric system also represents the “customization” of 

optical states into the chiral form. This molding of optical 

states results in the convergence of optical polarization to 

the specific SAM, similar to the spin black hole behavior 

[36], which enables the universal circular polarizers, that is, 

the achievement of chiral light irrespective of the incident 

polarization state (Fig. 2(f)). The PT-symmetry-protected 

chiral polarization and polarization convergence have been 

demonstrated experimentally in lattice structures (Fig. 2(g)) 

[36], photonic molecules (Fig. 2(h)) [35] in the THz regime, 

and numerically in metasurfaces [37, 38].

The theory of chiral polarization at the EP has been 

generalized to the analogy of relativistic electrodynamics 

[39, 40], the arbitrary control of polarization states [41, 42], 

and the realization of a transversely zero SAM [43]. 

Starting from the similarity between Maxwell’s equations 

for polarization states and the Lorentz force equation for 

relativistic particle movements [44], the understanding of 

chiral polarization at the EP as the E × B polarization 

drift has been demonstrated [39]. This generalization has 

enabled the realizations of the directional operation of linear 

polarizers [39] and the stable or sensitive qubit evolution 

in non-Hermitian systems depending on the phase of PT 

symmetry [40]. The degrees of freedom in non-Hermitian 

systems have also been applied to the arbitrary control of 

polarization states for their sensitive detection [41], and the 

control of polarization states using the near-thresholdless EP 

in plasmonic resonators [42]. Furthermore, as shown in the 

abstract form of Eq. (1), the PT-symmetric transformation 

of the linear basis to a chiral polarization in Fig. 2 can 

be easily extended to the transformation of the chiral basis 

to a linear polarization, which has been applied to the 

annihilation of the transverse spin, first demonstrating the 

linear polarization in the meridional plane of guided waves 

[43]. As shown, the introduction of chirality with non- 

Hermitian photonics has provided a new degree of freedom 

for the precise control of the 3D polarization states of light, 

achieving practical devices of universal circular polarizers, 

directional linear polarizers, polarization converters, and stable 

or sensitive qubit control in non-Hermitian quantum systems.

III. CHIRAL WAVEFRONT

As shown in the abstract form of Eq. (1), the chirality 

in PT-symmetric systems is platform-transparent and is 

protected by PT symmetry in contrast to the optically 

specific form of traditional optical chirality, that is, the 

mixing of electric and magnetic responses [6]. Therefore, 

by assigning a proper optical quantity to the basis of 

PT-symmetric systems, a new type of optical chirality for 

the target quantity has been achieved, such as the chirality 

of wavefronts and directionality. In this section, we 

summarize the recent achievements in the “chiral wavefront” 

FIG. 2. Chiral polarizations in non-Hermitian potentials. (a-e) Evolution of eigenpolarizations according to the phase of PT symmetry 

[36]: (a) Hermitian, (b) unbroken, (c) EP, and (d,e) non-Hermitian states. (f) The convergence of polarizations to the LCP state, 

showing spin black hole [36]. (g,h) The experimental platform for PT-symmetry-protected chirality: (g) lattice structures [36] and (h) 

photonic molecules [35]. Figure adapted from (a-g), ref. [36], OSA; and (h), ref. [35], APS, with permission.



Current Optics and Photonics, Vol. 3, No. 4, August 2019278

of light obtained from non-Hermitian optical potentials, 

which provides the OAM of light, also known as structured 

light [45].

The OAM is a fundamental property of photons, 

originating from the singularity in the wavefront of light 

defined by the topological charge. Because the OAM order 

is unbounded in contrast to two degrees of freedom in the 

SAM, access to the OAM of light has been desired to 

increase the information capacity in optical communications 

[46]. To generate the necessary phase evolution in the 

beam wavefront, recent methods using Hermitian potentials 

adopt the conversion of SAM to OAM [47] using patterned 

layers [48], spatiotemporally modulated microcavities [49], 

or optically controlled interactions in photonic molecules 

[50]. The chiral nature of non-Hermitian systems at the 

EP has also provided additional degrees of freedom in 

generating the OAM by constructing the unidirectional 

phase evolution in the wavefront.

Compared to the breaking of the mirror symmetry 

between circular polarizations, chiral wavefronts have been 

achieved from the breaking of the mirror symmetry between 

circular propagations of light, namely, clockwise (CW) and 

counterclockwise (CCW) wave propagation, initially studied 

in dissipative resonators [51]. This passive realization of 

the EP has been extended to the realization of exact PT 

symmetry using active materials, which was applied to 

construct a vortex laser beam with a nontrivial OAM [52] 

(Figs. 3(a)~3(c)). In this system, the condition of PT 

symmetry is achieved with alternating Cr/Ge bilayer and 

Ge single-layer structures periodically implemented on the 

active layer, which is composed of an InP substrate with a 

top layer made up of an InGaAsP multiple quantum well 

(Fig. 3(a)). The number of alternating structures selectively 

breaks the mirror symmetry of the target azimuthal number 

of the whispering gallery mode, and at the EP, the CCW 

mode unidirectionally circulates the resonator. This chiral 

eigenmode generates the laser beam with the chiral wave-

front (Fig. 3(b)) by introducing the sidewall scatterers to 

couple the lasing emission upward (Fig. 3(c)). In a recent 

work [53], the generation of the OAM using non-Hermitian 

potentials has been realized with the S-shaped optical 

structure with tapering, which allows a broadband response 

and the stable generation of the OAM.

IV. CHIRAL PROPAGATION

The breaking of mirror symmetry between CW and CCW 

propagating modes directly allows chirality for another 

optical quantity: the chiral evolution of canonical momentum 

in the system [54-57]. As discussed by Miller [58], the 

realization of the directionality in photonics is crucial for an 

input-output isolation [59] in optical logic devices. Although 

it is well known that PT symmetry cannot break the Lorentz 

reciprocity [60, 61], the asymmetric mode conversions and 

chiral evolution of wave propagation in complex potentials 

have enabled various optical functionalities for the routing 

of wave flows.

From the use of complex potentials composed of gain 

and loss media, PT-symmetric systems provide a suitable 

platform for the directional emission of a laser [54]. By 

asymmetrically imposing the scatterers on a whispering- 

gallery-mode (WGM) resonator, Peng et al. showed that the 

symmetry between CW and CCW propagation is broken, 

achieving directional lasing [56] (Fig. 4(a)). From the time- 

reversal symmetry relation between lasing and absorbing 

mechanisms [62-64], the mirror symmetry breaking for the 

CW and CCW has also been extended to the realization of 

the chiral absorber for guided-wave structures (Figs. 4(b), 

4(c)) [57].

The directional property obtained from PT-symmetric 

chirality was also applied to sensing applications suggested 

by Wiersig [65, 66], which was successfully demonstrated 

by an EP-based nanoparticle sensor that detects the 

perturbation from the EP [67]. In this EP-based sensor, the 

frequency splitting through the emergence of a nanoparticle 

is proportional to the square root of the perturbation, as 

shown in the term (κ2 - Vi
2)1/2 in Eq. (2) (Fig. 4(d)), which is 

FIG. 3. Chiral wavefronts in non-Hermitian potentials. (a-c) 

OAM microlaser [52]: (a) schematic, (b) OAM wavefront, 

and (c) fabricated device. (d,e) Broadband OAM laser using 

a tapered structure [53]: (d) schematic and (e) fabricated 

device. Figure adapted from (a-c), ref. [52], AAAS; and (d,e), 

ref. [53], with permission.
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more sensitive than the linear dependency of the traditional 

sensing methodology through the diabolic point [68]. This 

high sensitivity of the EP dynamics is maintained for larger 

intrinsic backscattering of the unperturbed non-Hermitian 

system than the backscattering induced by the perturbation 

(Fig. 4(e)) [66, 67]. This EP sensor is therefore appropriate 

for detecting sufficiently small perturbations, such as nano-

scale sensing problems.

For the chirality of optical wavefront and propagation in 

Sections III and IV constructed on multimode systems such 

as the OAM or azimuthal modal numbers, two theoretical 

aspects need to be considered, degeneracy and disorder, 

compared to the chirality in the SAM in Section II with 

only two degrees of freedom. First, Ge et al. demonstrated 

that the degeneracy of the system beyond 1D results in 

the absence of a PT-symmetric transition even for the 

infinitesimal breakdown of the time operator, thus prohibiting 

a real spectrum (Figs. 5(a), 5(b)) [69]. The conservation 

of some further discrete spatial symmetries is required 

for the emergence of a PT-symmetric transition with the 

conservation of a real spectrum over a finite interval (Figs. 

5(c), 5(d)). Second, although most research addresses the 

chiral eigenmode at the EP defined by PT symmetry, which 

requires a rigorous spatial symmetric configuration, it was 

FIG. 4. Chiral propagations in non-Hermitian potentials. (a) A schematic of a WGM resonator for observing the chiral wave 

propagation [56]. (b,c) Asymmetric wave propagation for chiral absorption: (b) CCW and (c) CW wave propagation [57]. (d,e) 

Operation principle of the EP sensor: (d) square root response and (e) the physical origin from the large backscattering induced by the 

unperturbed system [67]. Figure adapted from (a), ref. [56], NAS; (b,c), ref. [57], APS; and (d,e), ref. [67], Springer Nature, with 

permission.

FIG. 5. Roles of degeneracy and disorders in chirality in non-Hermitian potentials. (a) The absence of PT-symmetric transitions: (b) 

modal profiles [69]. (c) The emergence of PT-symmetric transitions with discrete spatial symmetry: (d) modal profiles [69]. (e-g) 

Realizations of the chiral wave evolution in disordered photonic networks with different topological charges [70]. Figure adapted 

from (a-d), ref. [69], APS; and (e-g), ref. [70], AAAS, with permission.
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shown that the chiral wave behaviors in non-Hermitian 

photonics can also be obtained in disordered structures, 

even with the real eigenvalue (Figs. 5(e)~5(g)) [70]. Starting 

from the randomly distributed optical resonators, the inverse 

design in the reciprocal space derives the necessary distri-

bution of complex on-site energy for the target eigenmode, 

which enables control over the topological charge in wave 

evolution. This result has been extended to the design of 

complex optical potentials for necessary functionalities, 

such as target decoupling [71] and Bohmian photonics [72] 

for constant-intensity waves [73-75] and phase-conserved 

energy confinement.

V. CHIRAL GEOMETRIC PHASE

In Sections II-IV, we focused on the chirality of optical 

quantities defined in real space: the SAM, OAM, and 

canonical momentum. In this section, we present a more 

abstract type of chirality in non-Hermitian photonics, 

namely, chiral phase evolution in an encircling of the EP 

in the system parameter space. This type of chirality is in 

line with the well-known concept of “geometric phases” in 

Hermitian systems, including the Pancharatnam [76], Berry 

[77], and Aharonov-Anandan phases [78], which denote 

the observable quantity from gauge-dependent quantities 

such as vector potentials by introducing the closed path 

integral around the arbitrary parameter space. The geometric 

nature of non-Hermitian systems appears in the asymmetric 

phase evolution of wavefunctions through the encircling of 

the EP.

The encircling of the EP was first investigated by Heiss 

et al. [32, 33, 79] in general 2D systems as the local 

approximation of an isolated EP in infinite-dimensional 

problems. Because the EP leads to the coalesced eigenvalues 

through the intersecting complex Riemann sheets, the 

encircling of the EP forms the topological structures (Figs. 

6(a), 6(b)), which results in the interchange of two eigen-

modes, while only one of them acquires a geometric phase 

as the “chiral geometric phase”. This expectation in abstract 

models has been confirmed with dissipative resonators [80] 

and molecular photodissociation [81]. The chiral property 

of the encircling of the EP was observed in microwave 

resonators with different linewidths of each uncoupled 

resonator [82], constituting the EP of the passive PT 

symmetry with small and large loss components [26].

The encircling of the EP has recently been extended to 

various fields with different platforms and concepts, for 

example, microwave [83, 84] and optical [85, 86] wave-

guides, optomechanics [87], and anti-PT-symmetric systems 

[88]. These efforts have provided device applications in 

photonics, especially for directionality. In terms of device 

functionalities, the realization of EP-encircling through the 

control of waveguide coupling and the wavevector of a 

single waveguide enables the strong attenuation of one of 

two transverse modes, achieving asymmetric mode switching 

(Fig. 6(c)) [83]. This asymmetric nature also allows the 

realization of an optical omnipolarizer [85] and non-reciprocal 

energy transfer between vibrational modes [87]. Recently, 

important theoretical discoveries have been achieved in 

this emerging field, such as the achiral property with a 

starting point of the encircling at the broken PT symmetry 

[84], the edge state in a non-Hermitian lattice from the 

EP-encircling in the momentum space [89], the general 

formulation of describing arbitrary loops enclosing multiple 

EPs [90], and the recent extension to the EP from anti-PT 

symmetry [88]. The practical demonstration of dynamical 

encircling was also achieved in the silicon photonics 

platform, which enables the practical realization of non- 

Hermitian photonics with integrated photonic structures 

(Fig. 6(d)) [86].

VI. CONCLUSION AND OUTLOOK

The singular form of chirality in non-Hermitian wave 

systems, which is distinct from conventional optical 

chirality, has enabled the expansion of the role of chirality 

not only in photonics but also in general wave physics, 

such as quantum mechanics, acoustics, and optomechanics. 

In comparison with different phase velocities or absorptions 

FIG. 6. Chiral geometric phase in non-Hermitian potentials. 

(a,b) Chiral encircling around the EP [83]: (a) Evolution of 

two eigenmodes with starting points on different Riemann 

sheets for a CCW loop and (b) the same as that for a CW loop. 

(c) Asymmetric mode switching based on the dynamical 

encircling [83]. (d) Silicon photonics platform for the 

encircling of the EP in the on-chip photonic device [86]. 

Figure adapted from (a-c), ref. [83], Springer Nature; and (d), 

ref. [86], Springer Nature, with permission.
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of circular polarizations in traditional chirality, non-Hermitian 

systems have stimulated generalized definitions of chirality 

for waves, achieving exotic wave phenomena: EP-induced 

chiral convergence of wave quantities (Sections II-IV) and 

geometric and topological properties distinct from those in 

Hermitian systems (Section V). According to its abstract 

form protected by PT symmetry, non-Hermitian chirality 

can be implemented in arbitrary wave quantities, namely, 

the SAM, OAM, canonical momentum, and geometric 

phase. These generalities have been directly applied to 

practical device applications as discussed in this review, 

namely, universal polarizers, OAM lasers, directional lasing, 

chiral absorbers, nanoparticle sensors, and asymmetric 

modal switching.

By constructing the connections to the recent emerging 

concepts and phenomena for new degrees of freedom in 

photonics, the range of the non-Hermitian chirality will be 

further extended. For example, we envisage the extension 

of non-Hermitian chirality to novel wave quantities and 

platforms: (i) non-Hermitian chirality in newly synthetized 

wave quantities by utilizing synthetic dimensions [91, 92] 

for the physical axes for PT symmetry, (ii) transverse spin 

[43, 93] and its generalization to 3D localized fields for 

the full realization of polarization states in the meridional 

plane, (iii) topological properties [11, 94, 95] with their 

non-Hermitian extensions for error-robust active photonic 

devices, (iv) disordered photonics [96-98] for the symmetry- 

broken realization of non-Hermitian chirality with the 

independent control of optical amplitude and phase [72], 

and (v) supersymmetry optics [99-103] for non-PT-symmetric 

non-Hermitian chirality especially for multilevel OAM 

devices.
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