DOI QR코드

DOI QR Code

Condition Monitoring of Reliability-Critical Components in Power Electronic Systems

전력전자 시스템에서 신뢰성 취약 소자의 상태 모니터링 방법

  • Choi, Ui-Min (Dept. of Electronic & IT Media Engineering, Seoul Nat'l Univ. of Science and Technology) ;
  • Lee, June-Seok (Korea Railroad Research Institute)
  • Received : 2019.01.16
  • Accepted : 2019.03.06
  • Published : 2019.08.20

Abstract

The reliability of power electronic systems becomes increasingly important, as power electronic systems have gradually gained an essential status in a wide range of industrial applications. Accordingly, recent research has made an effort to improve the reliability of power electronic systems to comply with stringent constraints on safety, cost, and availability. The condition monitoring of power electronic components is one of the main topics in the research area of the reliability of power electronic systems. In this paper, condition-monitoring methods of reliability-critical components in power electronic systems are discussed to provide the current state of knowledge by organizing and evaluating current representative literature.

Keywords

JRJJC3_2019_v24n4_244_f0001.png 이미지

Fig. 1. General structure of power electronic systems connected to a source and load.

JRJJC3_2019_v24n4_244_f0002.png 이미지

Fig. 2. Survey result on reliability-critical components in power electronic systems[3].

JRJJC3_2019_v24n4_244_f0003.png 이미지

Fig. 3. Structure and package-related failure mechanism of a standard IGBT module[4].

JRJJC3_2019_v24n4_244_f0004.png 이미지

Fig. 4. Variation of VCE_ON due to failure in bond-wires of IGBT module[7].

JRJJC3_2019_v24n4_244_f0005.png 이미지

Fig. 5. Simplified model of capacitor[9].

JRJJC3_2019_v24n4_244_f0006.png 이미지

Fig. 6. Separation of metal film from heavy edge by corrosion[14].

JRJJC3_2019_v24n4_244_f0007.png 이미지

Fig. 7. Offline measurement by voltage clamping circuit using a zener diode (a) VCE_ON measurement circuit, (b) VCE_ON measurement points[19],[20].

JRJJC3_2019_v24n4_244_f0008.png 이미지

Fig. 8. Offline measurement with a reed relay[21],[22] (a) Measurement circuit with additional leg and inductor, (b) Measurement circuit for 3-phase inverter, (c) Switching sequence for VCE_ON measurement.

JRJJC3_2019_v24n4_244_f0009.png 이미지

Fig. 9. VCE_ON measurement circuit with parallel connected MOSFET[23].

JRJJC3_2019_v24n4_244_f0010.png 이미지

Fig. 10. VCE_ON measurement circuit using double diodes[24],[25].

JRJJC3_2019_v24n4_244_f0011.png 이미지

Fig. 11. VCE_ON measurement circuit using a depletion mode MOSFET[22].

JRJJC3_2019_v24n4_244_f0012.png 이미지

Fig. 12. VCE_ON as a function of current level and junction temperature for a preliminary calibration[28].

JRJJC3_2019_v24n4_244_f0013.png 이미지

Fig. 13. K-factors depending on current levels (a) NTC region, (b) PTC region[28].

JRJJC3_2019_v24n4_244_f0014.png 이미지

Fig. 14. VCE_ON of an IGBT as a function of temperature under different injected low currents[30].

JRJJC3_2019_v24n4_244_f0015.png 이미지

Fig. 15. RGint of an IGBT inside an Infineon FS200R12PT4 module under different temperatures[33].

JRJJC3_2019_v24n4_244_f0016.png 이미지

Fig. 16. Simplified gate circuit with gate voltage before the threshold voltage is reached[33],[34].

JRJJC3_2019_v24n4_244_f0017.png 이미지

Fig. 17. VRGext_peak detector[33],[34].

JRJJC3_2019_v24n4_244_f0018.png 이미지

Fig. 18. VRGext_peak measure by peak detector under different temperatures[33],[34].

JRJJC3_2019_v24n4_244_f0019.png 이미지

Fig. 19. Preliminary calibration circuit[36].

JRJJC3_2019_v24n4_244_f0020.png 이미지

Fig. 20. Junction temperature vs. short-circuit current(ISC)[36].

JRJJC3_2019_v24n4_244_f0021.png 이미지

Fig. 21. Circuit schematic and device waveforms for the junction temperature estimation in a three-phase inverter[36] (a) Circuit schematic, (b) IGBT waveform.

JRJJC3_2019_v24n4_244_f0022.png 이미지

Fig. 22. Impedance characteristic of electrolytic capacitor[9].

JRJJC3_2019_v24n4_244_f0023.png 이미지

Fig. 23. Experimental setup with AC signal injection[39].

JRJJC3_2019_v24n4_244_f0024.png 이미지

Fig. 24. ESR estimation based on ripple current and ripple voltage of capacitor by using typical current sensor[42].

JRJJC3_2019_v24n4_244_f0025.png 이미지

Fig. 25. ESR estimation based on AC power losses of capacitor by using rogowski coil current sensor[43].

JRJJC3_2019_v24n4_244_f0026.png 이미지

Fig. 26. Control block diagram of AC/DC converter with condition monitoring of DC-link capacitor[44].

JRJJC3_2019_v24n4_244_f0027.png 이미지

Fig. 27. Behavior of the DC-link current and voltage according to gating pulses[44] (a) Switching state of upper switches, (b) Relation of phase currents.

JRJJC3_2019_v24n4_244_f0028.png 이미지

Fig. 28. Inverter system with currents for the explanation of the principle of capacitor condition monitoring[46].

JRJJC3_2019_v24n4_244_f0029.png 이미지

Fig. 29. Structure of ANN for capacitance estimation[49].

TABLE I COEFFICIENT OF THERMAL EXPANSION (CTE) OF DIFFERENT MATERIALS IN IGBT MODULE[5]

JRJJC3_2019_v24n4_244_t0001.png 이미지

TABLE II FAILURES OF THREE TYPES OF CAPACITORS[8]

JRJJC3_2019_v24n4_244_t0002.png 이미지

TABLE III TYPICAL END-OF-LIFE CRITERIA OF THREE TYPES OF CAPACITORS[8]

JRJJC3_2019_v24n4_244_t0003.png 이미지

TABLE IV CURRENT OF i5 DEPENDING ON INVERTER SWITCHING STATES[46]

JRJJC3_2019_v24n4_244_t0004.png 이미지

References

  1. F. Blaabjerg, Z. Chen, and S. B. Kjaer "Power electronics as efficient interface in dispersed power generation systems," IEEE Transactions on Power Electronics, Vol. 19, No. 5, pp. 1184-1194, Sep. 2004. https://doi.org/10.1109/TPEL.2004.833453
  2. F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Transactions on Industrial Electronics, Vol. 53, No. 5, pp. 1398-1409, Oct. 2006. https://doi.org/10.1109/TIE.2006.881997
  3. H. Wang, M. Liserre, F. Blaabjerg, P. de Place Rimmen, J. B. Jacobsen, T. Kvisgaard, and J. Landkildehus, “Transitioning to physics-of-failure as a reliability driver in power electronics,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol, 2, No. 1, pp. 97-114, Mar. 2014. https://doi.org/10.1109/JESTPE.2013.2290282
  4. U. M. Choi, F. Blaabjerg, and S. Jorgensen, “Power cycling test methods for reliability assessment of power device modules in respect to temperature stress,” IEEE Transactions on Power Electronics, Vol. 33, No. 3, pp. 2531-2551, Mar. 2018. https://doi.org/10.1109/TPEL.2017.2690500
  5. M. Ciappa, “Selected failure mechanism of modern power modules,” Microelectronics Reliability, Vol. 42, No. 4-5, pp. 653-667, Apr./May 2002. https://doi.org/10.1016/S0026-2714(02)00042-2
  6. J. Lutz, H. Schlangenotto, U. Scheuermann, and R. D. Doncker, Semiconductor Power Device-Physics, Characteristic, Reliability, NewYork:Springer-Verlag, ch. 11, 2011.
  7. U. M. Choi, S. Jorgensen, and F. Blaabjerg, “Advanced accelerated power cycling test for reliability investigation of power device modules,” IEEE Transactions on Power Electronics, Vol. 31, No. 12, pp. 8371-8386, Dec. 2016. https://doi.org/10.1109/TPEL.2016.2521899
  8. H. Wang and F. Blaabjerg, “Reliability of capacitors for DC-link applications in power electronic converters - An overview,” IEEE Transactions on Industry Applications, Vol. 50, No. 5, pp. 3569-3578, Sep./Oct. 2014. https://doi.org/10.1109/TIA.2014.2308357
  9. M. A. Vogelsberger, T. Wiesinger, and H. Ertl, “Life-cycle monitoring and voltage-managing unit for DC-link electrolytic capacitors in PWM converters,” IEEE Transactions on Power Electronics, Vol. 26, No. 2, pp. 493-503, Feb. 2011. https://doi.org/10.1109/TPEL.2010.2059713
  10. J. L. Stevens, J. S. Shaffer, and J. T. Vandenham, “The service life of large aluminum electrolytic capacitors: Effects of construction and application,” IEEE Transactions on Industry Applications., Vol. 38, No. 5, pp. 1441-1446, Sep./Oct. 2002. https://doi.org/10.1109/TIA.2002.802922
  11. R. M. Kerrigan, "Metallized polypropylene film energy storage capacitors for low pulse duty," in Proc. of CARTS USA, pp. 97-104, 2007.
  12. R. W. Brown, “Linking corrosion and catastrophic failure in low-power metallized polypropylene capacitors,” IEEE Transactions on Device Materials and Reliability, Vol. 6, No. 2, pp. 326-333, Jun. 2006. https://doi.org/10.1109/TDMR.2006.876612
  13. Nippon Chemi-con, Power Electronics Film Capacitors. Retrieved from: http://www.kemet.com/Lists/ProductCatalog/Attachments/139/F9000_TechInfo_PowerElectronic.pdf
  14. Film Capacitors-General Technical Information, EPCOS, Munich, Germany, May 2009. Retrieved from: https://www.tdk-electronics.tdk.com/download/530754/480aeb04c789e45ef5bb9681513474ba/pdf-generaltechnicalinformation.pdf
  15. B. S. Rawal and N. H. Chan, "Conduction and failure mechanisms in barium titanate based ceramics under highly accelerated conditions," AVX Corp. Techn. Inf., Vol. 6, 1984.
  16. D. Liu and M. J. Sampson, "Some aspects of the failure mechanisms in BaTiO3-Based multilayer ceramic capacitors," in Proc. of CARTS Int., pp. 59-71, 2012.
  17. H. Soliman, H. Wang, and F. Blaabjerg, “A review of the condition monitoring of capacitors in power electroni converters,” IEEE Transactions on Industry Applications., Vol. 52, No. 6, pp. 4976-4989, Nov./Dec. 2016. https://doi.org/10.1109/TIA.2016.2591906
  18. A. Singh, A. Anurag, and S. Anand, “Evaluation of vce at inflection point for monitoring bond wire degradation in discrete packaged IGBTs,” IEEE Transactions on Power Electronics, Vol. 32, No. 4, pp. 2481-2484, Apr. 2017. https://doi.org/10.1109/TPEL.2016.2621757
  19. B. Ji, X. Song, W. Cao, V. Pickert, Y. Hu, J. W. Mackersie, and G. Pierce, “In situ diagnostics and prognostics of solder fatigue in IGBT modules for electric vehicle drives,” IEEE Transactions on Power Electronics, Vol. 30, No. 3, pp. 1535-1543, Mar. 2015. https://doi.org/10.1109/TPEL.2014.2318991
  20. B. Ji, V. Pickert, W. Cao, and B. Zahawi, “In situ diagnostics and prognostics of wire bonding faults in IGBT modules for electric vehicle drives,” IEEE Transactions on Power Electronics, Vol. 28, No. 12, pp. 5568-5577, Dec. 2013. https://doi.org/10.1109/TPEL.2013.2251358
  21. R. O. Nielsen, J. Due, and S. Munk-Nielsen, "Innovative measuring system forwear-out indication of high power IGBT modules," in Proc. 2011 IEEE Energy Convers. Congr. Expo., pp. 1785-1790, Sep. 2011.
  22. U. M. Choi, F. Blaabjerg, S. Jorgensen, S. Munk-Nielsen, and B. Rannestad, “Reliability improvement of power converters by means of condition monitoring of IGBT modules,” IEEE Transactions on Power Electronics, Vol. 32, No. 10, pp. 7990-7997, Oct. 2017. https://doi.org/10.1109/TPEL.2016.2633578
  23. V. Smet, F. Forest, J. J. Huselstein, A. Rashed, and F. Richardeau, “Evaluation of vce monitoring as a real-time method to estimate aging of bond wire-IGBT modules stressed by power cycling,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 7, pp. 2760-2770, Jul. 2013. https://doi.org/10.1109/TIE.2012.2196894
  24. S. Beczkowski, P. Ghimre, A. R. de Vega, S. Munk-Nielsen, B. Rannestad, and P. Thogersen, "Online vce measurement method for wear-out monitoring of high power IGBT modules," in Proc. of EPE 2013, Sep. 2013.
  25. P. Ghimire, A. R. deVega, S. Beczkowski, B. Rannestad, S. Munk-Nielsen, and P. Thogersen, “Improving power converter reliability: Online monitoring of high-power IGBT modules,” IEEE Industrial Electronics Magazine, Vol. 8, No. 3, pp. 40-50, Sep. 2014. https://doi.org/10.1109/MIE.2014.2311829
  26. P. Ghimire, A. R. deVega, S. Beczkowski, B. Rannestad, S. Munk-Nielsen, and P. B. Thogersen, "An online vce measurement and temperature estimation method for high power IGBT module in normal PWM operation," in Proc. IPEC, pp. 2850-2855, May 2014.
  27. X. Perpina, J. F. Serviere, J. Saiz, D. Barlini, M. Mermet-Guyennet, and J. Millan, “Temperature measurement on series resistance and devices in power packs based on on-state voltage drop monitoring at high current,” Microelectronics Reliability, Vol. 46, No. 9-11, pp. 1834-1839, 2006. https://doi.org/10.1016/j.microrel.2006.07.078
  28. U. M. Choi, F. Blaabjerg, F. Iannuzzo, and S. Jorgensen, “Junction temperature estimation method for a 600 V, 30A IGBT module during converter operation,” Microelectronics Reliability, Vol. 55, No. 9-10, pp. 2022-2026, Aug./Sep. 2015. https://doi.org/10.1016/j.microrel.2015.06.146
  29. P. Ghimire, K. B. Pedersen, I. Trintis, B. Rannestad, and Stig Munk-Nielsen, "Online chip temperature monitoring using ${\upsilon}ce$-load current and IR thermography," in Proc. of ECCE, pp. 6602-6609, Sep. 2015.
  30. Y. Avenas, L. Dupont, and Z. Khatir, "Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters-A review," IEEE Transactions on Power Electronics, Vol. 27, No. 6, pp. 3081-3092. Jun. 2012. https://doi.org/10.1109/TPEL.2011.2178433
  31. R. Schmidt and U. Scheuermann, "Using the chip as a temperature sensor- The influence of steep lateral temperature gradients on the Vce(T)-measurement," in Proc. of EPE, Sep. 2009.
  32. D. Bergogne, B. Allard, and H. Morel, "An estimation method of the channel temperature of power MOS devices," in Proc. of PESC, pp. 1594-1599, Jun. 2000.
  33. N. Baker, "An electrical method for junction temperature measurement of power semiconductor switches," a Ph.D. Thesis, Aalborg University, Feb. 2016.
  34. N. Baker, S. Munk-Nielsen, F. Iannuzzo, and M. Liserre, "IGBT junction temperature measurement via peak gate current," IEEE Transactions on Power Electronics, Vol. 31, No. 5, pp. 3784-3793. May. 2015. https://doi.org/10.1109/TPEL.2015.2464714
  35. M. Denk and M. Bakran, "Junction temperature measurement during inverter operation using a TJ-IGBT-Driver," in Proc. of PCIM, May. 2015.
  36. Z. Xu, F. Xu, and Fei Wang, “Junction temperature measurement of IGBTs using short-circuit current as a temperature-sensitive electrical parameter for converter prototype evaluation,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 6, pp. 3419-3429, Jun. 2015. https://doi.org/10.1109/TED.2015.2470118
  37. G. Busatto, et al., "Characterisation of high-voltage IGBT modules at high temperature and high currents," in Proc. Int. Conf. Power Electron. Drive. Syst., pp. 1391-1396, 2003.
  38. S. Azzopardi, K. E. Boubkari, Y. Belmehdi, J. Y. Deletage, and E. Woirgard, "Investigation of mechanical stress effect on electrical behavior of trench punch through IGBT under short-circuit condition at low and high temperature," in Proc. Conf. EPE, pp. 1-10, 2011.
  39. A. Amaral and A. Cardoso, “A simple offline technique for evaluating the condition of aluminum electrolytic capacitors,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 8, pp. 3230-3237, Aug. 2009. https://doi.org/10.1109/TIE.2009.2022077
  40. A. Amaral and A. Cardoso, “Simple experimental techniques to characterize capacitors in a wide range of frequencies and temperatures,” IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 5, pp. 1258-1267, May. 2010. https://doi.org/10.1109/TIM.2009.2038018
  41. A. Amaral and A. Cardoso, “An economic offline technique for estimating the equivalent circuit of aluminum electrolytic capacitors,” IEEE Transactions on Instrumentation and Measurement, Vol. 57, No. 12, pp. 2697-2710, Dec. 2008. https://doi.org/10.1109/TIM.2008.925013
  42. P. Venet, F. Perisse, M. El-Husseini, and G. Rojat, “Realization of a smart electrolytic capacitor circuit,” IEEE Industry Application Magazine, Vol. 8, No. 1, pp. 16-20, Jan. 2002. https://doi.org/10.1109/2943.974353
  43. M. Vogelsberger, T. Wiesinger, and H. Ertl, “Life-cycle monitoring and voltage-managing unit for DC-link electrolytic capacitors in PWM converters,” IEEE Transactions on Industrial Electronics, Vol. 26, No. 2, pp. 493-503, Feb. 2011.
  44. X. S. Pu, T. H. Nguyen, D. C. Lee, K. B. Lee, and J. M. Kim, “Fault diagnosis of dc-link capacitors in three-phase ac/dc PWM converters by online estimation of equivalent series resistance,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 9, pp. 4118-4127, Sep. 2013. https://doi.org/10.1109/TIE.2012.2218561
  45. T. H. Nguyen and D. C. Lee, “Deterioration monitoring of DC-link capacitors in ac machine drives by current injection,” IEEE Transactions on Power Electronics, Vol. 30, No. 3, pp. 1126-1130, Mar. 2015. https://doi.org/10.1109/TPEL.2014.2339374
  46. A. Wechsler, B. Mecrow, D. Atkinson, J. Bennett, and M. Benarous, “Condition monitoring of dc-link capacitors in aerospace drives,” IEEE Transactions on Industry Application, Vol. 48, No. 6, pp. 1866-1874, Nov. 2012. https://doi.org/10.1109/TIA.2012.2222333
  47. G. Buiatti, J. Martin-Ramos, A. Amaral, P. Dworakowski, and A. M. Cardoso, “Condition monitoring of metallized polypropylene film capacitors in railway power trains,” IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 10, pp. 3796-3805, Oct. 2009. https://doi.org/10.1109/TIM.2009.2019719
  48. M. Ahmad, A. Arya, and S. Anand, "An online technique for condition monitoring of capacitor in PV system," in Proc. of IEEE Int. Conf. Ind. Technol., pp. 920-925, Mar. 2015.
  49. H. Soliman, H. Wang, B. Gadalla, and F. Blaabjerg, "Condition monitoring of DC-link capacitors based on artificial neural network algorithm," in Proc. of IEEE 5th Int. Conf. Power Eng., Energy Elect. Drives, pp. 587-591, May. 2015.
  50. H. Soliman, P. Davari, H. Wang, and F. Blaabjerg, "Capacitance estimation algorithm based on DC-Link voltage harmonics using artificial neural network in three-phase motor drive systems," in Proc. of ECCE, pp. 5790-5802, Sep. 2017.
  51. T. Kamel, Y. Biletskiy, and L. Chang, "Capacitor aging detection for the DC filters in the power electronic converters using anfis algorithm," in Proc. of 28th Can. Conf. Elect. Comput. Eng., pp. 663-668, May 2015.