Fig. 1. General structure of power electronic systems connected to a source and load.
Fig. 2. Survey result on reliability-critical components in power electronic systems[3].
Fig. 3. Structure and package-related failure mechanism of a standard IGBT module[4].
Fig. 4. Variation of VCE_ON due to failure in bond-wires of IGBT module[7].
Fig. 5. Simplified model of capacitor[9].
Fig. 6. Separation of metal film from heavy edge by corrosion[14].
Fig. 7. Offline measurement by voltage clamping circuit using a zener diode (a) VCE_ON measurement circuit, (b) VCE_ON measurement points[19],[20].
Fig. 8. Offline measurement with a reed relay[21],[22] (a) Measurement circuit with additional leg and inductor, (b) Measurement circuit for 3-phase inverter, (c) Switching sequence for VCE_ON measurement.
Fig. 9. VCE_ON measurement circuit with parallel connected MOSFET[23].
Fig. 10. VCE_ON measurement circuit using double diodes[24],[25].
Fig. 11. VCE_ON measurement circuit using a depletion mode MOSFET[22].
Fig. 12. VCE_ON as a function of current level and junction temperature for a preliminary calibration[28].
Fig. 13. K-factors depending on current levels (a) NTC region, (b) PTC region[28].
Fig. 14. VCE_ON of an IGBT as a function of temperature under different injected low currents[30].
Fig. 15. RGint of an IGBT inside an Infineon FS200R12PT4 module under different temperatures[33].
Fig. 16. Simplified gate circuit with gate voltage before the threshold voltage is reached[33],[34].
Fig. 17. VRGext_peak detector[33],[34].
Fig. 18. VRGext_peak measure by peak detector under different temperatures[33],[34].
Fig. 19. Preliminary calibration circuit[36].
Fig. 20. Junction temperature vs. short-circuit current(ISC)[36].
Fig. 21. Circuit schematic and device waveforms for the junction temperature estimation in a three-phase inverter[36] (a) Circuit schematic, (b) IGBT waveform.
Fig. 22. Impedance characteristic of electrolytic capacitor[9].
Fig. 23. Experimental setup with AC signal injection[39].
Fig. 24. ESR estimation based on ripple current and ripple voltage of capacitor by using typical current sensor[42].
Fig. 25. ESR estimation based on AC power losses of capacitor by using rogowski coil current sensor[43].
Fig. 26. Control block diagram of AC/DC converter with condition monitoring of DC-link capacitor[44].
Fig. 27. Behavior of the DC-link current and voltage according to gating pulses[44] (a) Switching state of upper switches, (b) Relation of phase currents.
Fig. 28. Inverter system with currents for the explanation of the principle of capacitor condition monitoring[46].
Fig. 29. Structure of ANN for capacitance estimation[49].
TABLE I COEFFICIENT OF THERMAL EXPANSION (CTE) OF DIFFERENT MATERIALS IN IGBT MODULE[5]
TABLE II FAILURES OF THREE TYPES OF CAPACITORS[8]
TABLE III TYPICAL END-OF-LIFE CRITERIA OF THREE TYPES OF CAPACITORS[8]
TABLE IV CURRENT OF i5 DEPENDING ON INVERTER SWITCHING STATES[46]
References
- F. Blaabjerg, Z. Chen, and S. B. Kjaer "Power electronics as efficient interface in dispersed power generation systems," IEEE Transactions on Power Electronics, Vol. 19, No. 5, pp. 1184-1194, Sep. 2004. https://doi.org/10.1109/TPEL.2004.833453
- F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Transactions on Industrial Electronics, Vol. 53, No. 5, pp. 1398-1409, Oct. 2006. https://doi.org/10.1109/TIE.2006.881997
- H. Wang, M. Liserre, F. Blaabjerg, P. de Place Rimmen, J. B. Jacobsen, T. Kvisgaard, and J. Landkildehus, “Transitioning to physics-of-failure as a reliability driver in power electronics,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol, 2, No. 1, pp. 97-114, Mar. 2014. https://doi.org/10.1109/JESTPE.2013.2290282
- U. M. Choi, F. Blaabjerg, and S. Jorgensen, “Power cycling test methods for reliability assessment of power device modules in respect to temperature stress,” IEEE Transactions on Power Electronics, Vol. 33, No. 3, pp. 2531-2551, Mar. 2018. https://doi.org/10.1109/TPEL.2017.2690500
- M. Ciappa, “Selected failure mechanism of modern power modules,” Microelectronics Reliability, Vol. 42, No. 4-5, pp. 653-667, Apr./May 2002. https://doi.org/10.1016/S0026-2714(02)00042-2
- J. Lutz, H. Schlangenotto, U. Scheuermann, and R. D. Doncker, Semiconductor Power Device-Physics, Characteristic, Reliability, NewYork:Springer-Verlag, ch. 11, 2011.
- U. M. Choi, S. Jorgensen, and F. Blaabjerg, “Advanced accelerated power cycling test for reliability investigation of power device modules,” IEEE Transactions on Power Electronics, Vol. 31, No. 12, pp. 8371-8386, Dec. 2016. https://doi.org/10.1109/TPEL.2016.2521899
- H. Wang and F. Blaabjerg, “Reliability of capacitors for DC-link applications in power electronic converters - An overview,” IEEE Transactions on Industry Applications, Vol. 50, No. 5, pp. 3569-3578, Sep./Oct. 2014. https://doi.org/10.1109/TIA.2014.2308357
- M. A. Vogelsberger, T. Wiesinger, and H. Ertl, “Life-cycle monitoring and voltage-managing unit for DC-link electrolytic capacitors in PWM converters,” IEEE Transactions on Power Electronics, Vol. 26, No. 2, pp. 493-503, Feb. 2011. https://doi.org/10.1109/TPEL.2010.2059713
- J. L. Stevens, J. S. Shaffer, and J. T. Vandenham, “The service life of large aluminum electrolytic capacitors: Effects of construction and application,” IEEE Transactions on Industry Applications., Vol. 38, No. 5, pp. 1441-1446, Sep./Oct. 2002. https://doi.org/10.1109/TIA.2002.802922
- R. M. Kerrigan, "Metallized polypropylene film energy storage capacitors for low pulse duty," in Proc. of CARTS USA, pp. 97-104, 2007.
- R. W. Brown, “Linking corrosion and catastrophic failure in low-power metallized polypropylene capacitors,” IEEE Transactions on Device Materials and Reliability, Vol. 6, No. 2, pp. 326-333, Jun. 2006. https://doi.org/10.1109/TDMR.2006.876612
- Nippon Chemi-con, Power Electronics Film Capacitors. Retrieved from: http://www.kemet.com/Lists/ProductCatalog/Attachments/139/F9000_TechInfo_PowerElectronic.pdf
- Film Capacitors-General Technical Information, EPCOS, Munich, Germany, May 2009. Retrieved from: https://www.tdk-electronics.tdk.com/download/530754/480aeb04c789e45ef5bb9681513474ba/pdf-generaltechnicalinformation.pdf
- B. S. Rawal and N. H. Chan, "Conduction and failure mechanisms in barium titanate based ceramics under highly accelerated conditions," AVX Corp. Techn. Inf., Vol. 6, 1984.
- D. Liu and M. J. Sampson, "Some aspects of the failure mechanisms in BaTiO3-Based multilayer ceramic capacitors," in Proc. of CARTS Int., pp. 59-71, 2012.
- H. Soliman, H. Wang, and F. Blaabjerg, “A review of the condition monitoring of capacitors in power electroni converters,” IEEE Transactions on Industry Applications., Vol. 52, No. 6, pp. 4976-4989, Nov./Dec. 2016. https://doi.org/10.1109/TIA.2016.2591906
- A. Singh, A. Anurag, and S. Anand, “Evaluation of vce at inflection point for monitoring bond wire degradation in discrete packaged IGBTs,” IEEE Transactions on Power Electronics, Vol. 32, No. 4, pp. 2481-2484, Apr. 2017. https://doi.org/10.1109/TPEL.2016.2621757
- B. Ji, X. Song, W. Cao, V. Pickert, Y. Hu, J. W. Mackersie, and G. Pierce, “In situ diagnostics and prognostics of solder fatigue in IGBT modules for electric vehicle drives,” IEEE Transactions on Power Electronics, Vol. 30, No. 3, pp. 1535-1543, Mar. 2015. https://doi.org/10.1109/TPEL.2014.2318991
- B. Ji, V. Pickert, W. Cao, and B. Zahawi, “In situ diagnostics and prognostics of wire bonding faults in IGBT modules for electric vehicle drives,” IEEE Transactions on Power Electronics, Vol. 28, No. 12, pp. 5568-5577, Dec. 2013. https://doi.org/10.1109/TPEL.2013.2251358
- R. O. Nielsen, J. Due, and S. Munk-Nielsen, "Innovative measuring system forwear-out indication of high power IGBT modules," in Proc. 2011 IEEE Energy Convers. Congr. Expo., pp. 1785-1790, Sep. 2011.
- U. M. Choi, F. Blaabjerg, S. Jorgensen, S. Munk-Nielsen, and B. Rannestad, “Reliability improvement of power converters by means of condition monitoring of IGBT modules,” IEEE Transactions on Power Electronics, Vol. 32, No. 10, pp. 7990-7997, Oct. 2017. https://doi.org/10.1109/TPEL.2016.2633578
- V. Smet, F. Forest, J. J. Huselstein, A. Rashed, and F. Richardeau, “Evaluation of vce monitoring as a real-time method to estimate aging of bond wire-IGBT modules stressed by power cycling,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 7, pp. 2760-2770, Jul. 2013. https://doi.org/10.1109/TIE.2012.2196894
- S. Beczkowski, P. Ghimre, A. R. de Vega, S. Munk-Nielsen, B. Rannestad, and P. Thogersen, "Online vce measurement method for wear-out monitoring of high power IGBT modules," in Proc. of EPE 2013, Sep. 2013.
- P. Ghimire, A. R. deVega, S. Beczkowski, B. Rannestad, S. Munk-Nielsen, and P. Thogersen, “Improving power converter reliability: Online monitoring of high-power IGBT modules,” IEEE Industrial Electronics Magazine, Vol. 8, No. 3, pp. 40-50, Sep. 2014. https://doi.org/10.1109/MIE.2014.2311829
- P. Ghimire, A. R. deVega, S. Beczkowski, B. Rannestad, S. Munk-Nielsen, and P. B. Thogersen, "An online vce measurement and temperature estimation method for high power IGBT module in normal PWM operation," in Proc. IPEC, pp. 2850-2855, May 2014.
- X. Perpina, J. F. Serviere, J. Saiz, D. Barlini, M. Mermet-Guyennet, and J. Millan, “Temperature measurement on series resistance and devices in power packs based on on-state voltage drop monitoring at high current,” Microelectronics Reliability, Vol. 46, No. 9-11, pp. 1834-1839, 2006. https://doi.org/10.1016/j.microrel.2006.07.078
- U. M. Choi, F. Blaabjerg, F. Iannuzzo, and S. Jorgensen, “Junction temperature estimation method for a 600 V, 30A IGBT module during converter operation,” Microelectronics Reliability, Vol. 55, No. 9-10, pp. 2022-2026, Aug./Sep. 2015. https://doi.org/10.1016/j.microrel.2015.06.146
-
P. Ghimire, K. B. Pedersen, I. Trintis, B. Rannestad, and Stig Munk-Nielsen, "Online chip temperature monitoring using
${\upsilon}ce$ -load current and IR thermography," in Proc. of ECCE, pp. 6602-6609, Sep. 2015. - Y. Avenas, L. Dupont, and Z. Khatir, "Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters-A review," IEEE Transactions on Power Electronics, Vol. 27, No. 6, pp. 3081-3092. Jun. 2012. https://doi.org/10.1109/TPEL.2011.2178433
- R. Schmidt and U. Scheuermann, "Using the chip as a temperature sensor- The influence of steep lateral temperature gradients on the Vce(T)-measurement," in Proc. of EPE, Sep. 2009.
- D. Bergogne, B. Allard, and H. Morel, "An estimation method of the channel temperature of power MOS devices," in Proc. of PESC, pp. 1594-1599, Jun. 2000.
- N. Baker, "An electrical method for junction temperature measurement of power semiconductor switches," a Ph.D. Thesis, Aalborg University, Feb. 2016.
- N. Baker, S. Munk-Nielsen, F. Iannuzzo, and M. Liserre, "IGBT junction temperature measurement via peak gate current," IEEE Transactions on Power Electronics, Vol. 31, No. 5, pp. 3784-3793. May. 2015. https://doi.org/10.1109/TPEL.2015.2464714
- M. Denk and M. Bakran, "Junction temperature measurement during inverter operation using a TJ-IGBT-Driver," in Proc. of PCIM, May. 2015.
- Z. Xu, F. Xu, and Fei Wang, “Junction temperature measurement of IGBTs using short-circuit current as a temperature-sensitive electrical parameter for converter prototype evaluation,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 6, pp. 3419-3429, Jun. 2015. https://doi.org/10.1109/TED.2015.2470118
- G. Busatto, et al., "Characterisation of high-voltage IGBT modules at high temperature and high currents," in Proc. Int. Conf. Power Electron. Drive. Syst., pp. 1391-1396, 2003.
- S. Azzopardi, K. E. Boubkari, Y. Belmehdi, J. Y. Deletage, and E. Woirgard, "Investigation of mechanical stress effect on electrical behavior of trench punch through IGBT under short-circuit condition at low and high temperature," in Proc. Conf. EPE, pp. 1-10, 2011.
- A. Amaral and A. Cardoso, “A simple offline technique for evaluating the condition of aluminum electrolytic capacitors,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 8, pp. 3230-3237, Aug. 2009. https://doi.org/10.1109/TIE.2009.2022077
- A. Amaral and A. Cardoso, “Simple experimental techniques to characterize capacitors in a wide range of frequencies and temperatures,” IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 5, pp. 1258-1267, May. 2010. https://doi.org/10.1109/TIM.2009.2038018
- A. Amaral and A. Cardoso, “An economic offline technique for estimating the equivalent circuit of aluminum electrolytic capacitors,” IEEE Transactions on Instrumentation and Measurement, Vol. 57, No. 12, pp. 2697-2710, Dec. 2008. https://doi.org/10.1109/TIM.2008.925013
- P. Venet, F. Perisse, M. El-Husseini, and G. Rojat, “Realization of a smart electrolytic capacitor circuit,” IEEE Industry Application Magazine, Vol. 8, No. 1, pp. 16-20, Jan. 2002. https://doi.org/10.1109/2943.974353
- M. Vogelsberger, T. Wiesinger, and H. Ertl, “Life-cycle monitoring and voltage-managing unit for DC-link electrolytic capacitors in PWM converters,” IEEE Transactions on Industrial Electronics, Vol. 26, No. 2, pp. 493-503, Feb. 2011.
- X. S. Pu, T. H. Nguyen, D. C. Lee, K. B. Lee, and J. M. Kim, “Fault diagnosis of dc-link capacitors in three-phase ac/dc PWM converters by online estimation of equivalent series resistance,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 9, pp. 4118-4127, Sep. 2013. https://doi.org/10.1109/TIE.2012.2218561
- T. H. Nguyen and D. C. Lee, “Deterioration monitoring of DC-link capacitors in ac machine drives by current injection,” IEEE Transactions on Power Electronics, Vol. 30, No. 3, pp. 1126-1130, Mar. 2015. https://doi.org/10.1109/TPEL.2014.2339374
- A. Wechsler, B. Mecrow, D. Atkinson, J. Bennett, and M. Benarous, “Condition monitoring of dc-link capacitors in aerospace drives,” IEEE Transactions on Industry Application, Vol. 48, No. 6, pp. 1866-1874, Nov. 2012. https://doi.org/10.1109/TIA.2012.2222333
- G. Buiatti, J. Martin-Ramos, A. Amaral, P. Dworakowski, and A. M. Cardoso, “Condition monitoring of metallized polypropylene film capacitors in railway power trains,” IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 10, pp. 3796-3805, Oct. 2009. https://doi.org/10.1109/TIM.2009.2019719
- M. Ahmad, A. Arya, and S. Anand, "An online technique for condition monitoring of capacitor in PV system," in Proc. of IEEE Int. Conf. Ind. Technol., pp. 920-925, Mar. 2015.
- H. Soliman, H. Wang, B. Gadalla, and F. Blaabjerg, "Condition monitoring of DC-link capacitors based on artificial neural network algorithm," in Proc. of IEEE 5th Int. Conf. Power Eng., Energy Elect. Drives, pp. 587-591, May. 2015.
- H. Soliman, P. Davari, H. Wang, and F. Blaabjerg, "Capacitance estimation algorithm based on DC-Link voltage harmonics using artificial neural network in three-phase motor drive systems," in Proc. of ECCE, pp. 5790-5802, Sep. 2017.
- T. Kamel, Y. Biletskiy, and L. Chang, "Capacitor aging detection for the DC filters in the power electronic converters using anfis algorithm," in Proc. of 28th Can. Conf. Elect. Comput. Eng., pp. 663-668, May 2015.