DOI QR코드

DOI QR Code

Petroleum sludge treatment and disposal: A review

  • 투고 : 2018.04.04
  • 심사 : 2018.08.07
  • 발행 : 2019.12.27

초록

Petroleum industry produces one of the popular hazardous waste known as Petroleum Sludge. The treatment and disposal of petroleum sludge has created a major challenge in recent years. This review provides insights into various approaches involved in the treatment, and disposal of petroleum sludge. Various methods used in the treatment and disposal of petroleum sludge such as incineration, stabilization/solidification, oxidation, and bio-degradation are explained fully and other techniques utilized in oil recovery from petroleum sludge such as solvent extraction, centrifugation, surfactant EOR, freeze/thaw, pyrolysis, microwave irradiation, electro-kinetic method, ultrasonic irradiation and froth flotation were discussed. The pros and cons of these methods were critically considered and a recommendation for economically useful alternatives to disposal of this unfriendly material was presented.

키워드

참고문헌

  1. Ling CC, Isa MH. Bioremediation of oily sludge contaminated soil by co-composting with sewage sludge. J. Sci. Ind. Res. 2006;65:364-369.
  2. Paratene$^{TM}$ sludge fluidization and recovery [Internet]. [cited 6 November 2017]. Available from: http://www.paratene.com/pdfs/brochures/tanksludgepaper.
  3. USEA. Hazardous waste listings - A user-friendly reference document draft [Internet]. c2008 [cited 21 October 2017]. Available from: http://www. epa.gov /osw/hazard/wastetypes/pdfs/listingref.pdf.
  4. Asia IO, Enweani IB, Eguavoen IO. Characterization and treatment of sludge. Afr. J. Biotechnol. 2006;5:461-466.
  5. Bojes HK, Pope PG. Characterization of EPA's 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas, Regul. Toxicol. Pharmacol. 2007;47: 288-295. https://doi.org/10.1016/j.yrtph.2006.11.007
  6. Neff JM. Composition, environmental, fates, and biological effects of water based drilling muds and cuttings discharged to the marine environment. Prepared for Petroleum Environmental Research Forum and American Petroleum Institute; 2005. p. 1-73.
  7. Uko OA. Drill cuttings initiative final report-compilation of reports. Research & Development Phases 1 and 2, Science Review Group. In: Stakeholder Dialogue Meetings; 2001. p. 1-135.
  8. Oljeindustriens Landsforming. Guidelines for characterization of offshore drill cuttings piles. Final Report, Norwegian Oil Industry Association; 2003. p. 1-43.
  9. API Environmental Guidance Document: Onshore solid waste management in exploration and production operations. American Petroleum Institute (API), Washington D.C.; 1989. p. 1-120.
  10. da Rocha ORS, Dantas RF, Duarte MMMB, Duarte MML, da Silva VL. Oily sludge treatment by photocatalysis applying black and white light. Chem. Eng. J. 2010;157:80-85. https://doi.org/10.1016/j.cej.2009.10.050
  11. Roldan-Carrillo T, Castorena-Cortes G, Zapata-Penasco I, Reyes-Avila J, Olguin-Lora P. Aerobic biodegradation of sludge with high hydrocarbon content generated by a Mexican natural gas processing facility. J. Environ. Manage. 2012;95:S93-S98. https://doi.org/10.1016/j.jenvman.2011.04.014
  12. Marin JA, Moreno JL, Hernandez T, Garcia C. Bioremediation by composting of heavy oil refinery sludge in semiarid conditions. Biodegradation 2006;17:251-261. https://doi.org/10.1007/s10532-005-5020-2
  13. Admon S, Green M, Avnimelech Y. Biodegradation kinetics of hydrocarbons in soil during land treatment of oily sludge. Biorem. J. 2001;5:193-209. https://doi.org/10.1080/20018891079285
  14. Robertson SJ, McGill WB, Massicotte HB, Rutherford PM. Petroleum hydrocarbon contamination in boreal forest soils: A mycorrhizal ecosystems perspective. Biol. Rev. 2007;82:213-240. https://doi.org/10.1111/j.1469-185X.2007.00012.x
  15. Al-Mutairi N, Bufarsan A, Al-Rukaibi F. Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels. Chemosphere 2008;74:142-148. https://doi.org/10.1016/j.chemosphere.2008.08.020
  16. Trofimov SY, Rozanova MS. Transformation of soil properties under the impact of oil pollution. Eurasian Soil Sci. 2003;36:S82-S87.
  17. Suleimanov RR, Gabbasova IM, Sitdikov RN. Changes in the properties of oily gray forest soil during biological reclamation. Biol. Bull. 2005;32:109-115.
  18. Tang J, Lu X, Sun Q, Zhu W. Aging effect of petroleum hydrocarbons in soil under different attenuation conditions. Agr. Ecosyst. Environ. 2012;149:109-117. https://doi.org/10.1016/j.agee.2011.12.020
  19. Xu N, Wang W, Han P, Lu X. Effects of ultrasound on oily sludge deoiling. J. Hazard. Mater. 2009;171:914-917. https://doi.org/10.1016/j.jhazmat.2009.06.091
  20. Liu J, Jiang X, Zhou L, Han X, Cui Z. Pyrolysis treatment of oily sludge andmodel-free kinetics analysis. J. Hazard. Mater. 2009;161:1208-1215. https://doi.org/10.1016/j.jhazmat.2008.04.072
  21. Mater L, Sperb RM, Madureira L, Rosin A, Correa A, Radetski CM. Proposal of a sequential treatment methodology for the safe reuse of oily sludge-contaminated soil. J. Hazard. Mater. B 2006;136:967-971. https://doi.org/10.1016/j.jhazmat.2006.01.041
  22. Zubaidy EAH, Abouelnasr DM. Fuel recovery from waste oily sludge using solvent extraction. Process. Saf. Environ. 2010;88:318-326. https://doi.org/10.1016/j.psep.2010.04.001
  23. Li CT, Lee WJ, Mi HH, Su CC. PAH emission from the incineration of waste oily sludge and PE plastic mixtures. Sci. Total. Environ. 1995;170:171-183. https://doi.org/10.1016/0048-9697(95)04705-X
  24. Yan P, Lu M, Yang Q, Zhang HL, Zhang ZZ, Chen R. Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant- producing Pseudomonas. Bioresour. Technol. 2012;116:24-28. https://doi.org/10.1016/j.biortech.2012.04.024
  25. Al-Futaisi A, Jamrah A, Yaghi B, Taha R. Assessment of alternative management techniques of tank bottom petroleum sludge in Oman. J. Hazard. Mater. 2007;141:557-564. https://doi.org/10.1016/j.jhazmat.2006.07.023
  26. da Silva VL, Alves FC, de Franc FP. A review of the technological solutions for the treatment of oily sludges from petroleum refineries. Waste Manage. Res. 2012;30:1016-1030. https://doi.org/10.1177/0734242X12448517
  27. Kriipsalu M, Marques M, Maastik A. Characterization of oily sludge from wastewater treatment plant flocculation-flotation unit in a petroleum refinery and its treatment implications. J. Mater. Cycles Waste Manage. 2008;10:79-86. https://doi.org/10.1007/s10163-007-0188-7
  28. Hu G, Li J, Zeng G. Recent development in the treatment of only sludge from petroleum industry: A review. J. Hazard. Mater. 2013;261:470-490. https://doi.org/10.1016/j.jhazmat.2013.07.069
  29. Tavassoli T, Mousavi SM, Shojaosadati SA, Salehizadeh H. Asphaltene biodegradation using microorganisms isolated from oil samples. Fuel 2012;93:142-148. https://doi.org/10.1016/j.fuel.2011.10.021
  30. Al-Zahrani SM, Putra MD. Used lubricating oil regeneration by various solvent extraction techniques. J. Ind. Eng. Chem. 2013;19:536-539. https://doi.org/10.1016/j.jiec.2012.09.007
  31. Gazineu MHP, de Araujo AA, Brandao YB, Hazin CA, Godoy JM. Radioactivity concentration in liquid and solid phases of scale and sludge generatedin the petroleum industry. J. Environ. Radioact. 2005;81:47-54. https://doi.org/10.1016/j.jenvrad.2004.11.003
  32. El Naggar AY, Saad EA, Kandil AT, Elmoher HO. Petroleum cuts as solvent extractor for oil recovery from petroleum sludge. J. Petrol. Technol. Altern. Fuel. 2010;1:10-19.
  33. Meyer DS, Brons GB, Perry R, Wildemeersch SLA, Kennedy RJ. Oil tank sludge removal method. United States Patent; 2006: US 2006/0042661 A1.
  34. Taiwo EA, Otolorin JA. Oil recovery from petroleum sludge by solvent extraction. Petrol. Sci. Technol. 2009;27:836-844. https://doi.org/10.1080/10916460802455582
  35. Schwab AP, Su J, Wetzel S, Pekarek S, Banks MK. Extraction of petroleum hydrocarbons from soil by mechanical shaking. Environ. Sci. Technol. 1999;33:1940-1945. https://doi.org/10.1021/es9809758
  36. Conaway LM. Method for processing oil refining waste. Continuum Environmental, Inc., United States, 1999.
  37. Cambiella A, Benito JM, Pazos C, Coca J. Centrifugal separation efficiency in the treatment of waste emulsified oils. Chem. Eng. Res. Des. 2006;84:69-76. https://doi.org/10.1205/cherd.05130
  38. Nahmad DG. Method to recover crude oil from sludge or emulsion. United States Patent, US; 2012: 8,197,667 B2.
  39. Nii S, Kikumoto S, Tokuyama H. Quantitative approach to ultrasonic emulsion separation. Ultrason. Sonochem. 2009;16:145-149. https://doi.org/10.1016/j.ultsonch.2008.07.005
  40. Mulligan CN. Recent advances in the environmental applications of biosurfactants. Curr. Opin. Colloid Interface Sci. 2009;14:372-378. https://doi.org/10.1016/j.cocis.2009.06.005
  41. Christofi N, Ivshina IB. A review: Microbial surfactants and their use in fieldstudies of soil remediation. J. Appl. Microbiol. 2002;93:915-929. https://doi.org/10.1046/j.1365-2672.2002.01774.x
  42. Grasso D, Subramaniam K, Pignatello JJ, Yang Y, Ratte D. Micellar desorption of polynuclear aromatic hydrocarbons from contaminated soil. Colloids Surf. A 2001;194:65-74. https://doi.org/10.1016/S0927-7757(01)00800-7
  43. Cuypers C, Pancras T, Grotenhuis T, Rulkens W. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl- beta-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 2002;46:1235-1245. https://doi.org/10.1016/S0045-6535(01)00199-0
  44. Prak DJL, Pritchard PH. Degradation of polycyclic aromatic hydrocarbons dissolved in Tween 80 surfactant solutions by Sphingomonas paucimobilis EPA 505. Can. J. Microbiol. 2002;48:151-158. https://doi.org/10.1139/w02-004
  45. Abdel-Azim AA, Abdul-Raheim AM, Kamel RK, Abdel-Raouf ME. Demulsifier systems applied to breakdown petroleum sludge. J. Petrol. Sci. Eng. 2011;78:364-370. https://doi.org/10.1016/j.petrol.2011.07.008
  46. de Castro Dantas TN, Neto AAD, Moura EF. Microemulsion systems applied to breakdown petroleum emulsions. J. Petrol. Sci. Eng. 2001;32:145-149. https://doi.org/10.1016/S0920-4105(01)00156-5
  47. Mulligan CN, Yong RN, Gibbs BF. Surfactant-enhanced remediation of contaminated soil: A review. Eng. Geol. 2001;60:371-380. https://doi.org/10.1016/S0013-7952(00)00117-4
  48. Whang LM, Liu PW, Ma CC, Cheng SS. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J. Hazard. Mater. 2008;151:155-163. https://doi.org/10.1016/j.jhazmat.2007.05.063
  49. Cort TL, Song MS, Bielefeldt AR. Nonionic surfactant effects on pentachlorophenol degradation. Water Res. 2002;36:1253-1261. https://doi.org/10.1016/S0043-1354(01)00320-7
  50. Syal S, Ramamurthy V. Characterization of biosurfactant synthesis in a hydrocarbon utilizing bacterial isolate. Indian J. Microbiol. 2003;43:175-180.
  51. Urum K, Pekdemir T. Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 2004;57:1139-1150. https://doi.org/10.1016/j.chemosphere.2004.07.048
  52. Ron EZ, Rosenberg E. Biosurfactants and oil bioremediation. Curr. Opin. Biotechnol. 2002;13:249-252. https://doi.org/10.1016/S0958-1669(02)00316-6
  53. Mulligan CN. Environmental applications for biosurfactants. Environ. Pollut. 2005;133:183-198. https://doi.org/10.1016/j.envpol.2004.06.009
  54. Pekdemir T, Copur M, Urum K. Emulsification of crude oil-water system using biosurfactant. Process. Saf. Environ. 2005;83:38-46. https://doi.org/10.1205/psep.03176
  55. Chin CL, Yi CH, Yu HW, Jo SC. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J. Hazard. Mater. 2009;167:609-614. https://doi.org/10.1016/j.jhazmat.2009.01.017
  56. Chen GH, He GH. Separation of water and oil from water-in-oil emulsion by freeze/thaw method. Sep. Purif. Technol. 2003;31: 83-89. https://doi.org/10.1016/S1383-5866(02)00156-9
  57. Sean DS, Lee DJ. Expression deliquoring of oily sludge from a petroleum refinery plant. Waste Manage. 1999;19:349-354. https://doi.org/10.1016/S0956-053X(99)00139-7
  58. Lin G, He G, Li X, et al. Freeze/thaw induced demulsification of water-in-oil emulsions with loosely packed droplets. Sep. Purif. Technol. 2007;56:175-183. https://doi.org/10.1016/j.seppur.2007.01.035
  59. Lin C, He G, Dong C, Liu H, Xiao G, Liu Y. Effect of oil phase transition on freeze/thaw-induced demulsification of water- in-oil emulsions. Langmuir 2008;24:5291-5298. https://doi.org/10.1021/la704079s
  60. Jean DS, Lee DJ, Wu JSU. Separation of oil from oily sludge by freezing and thawing. Water Res. 1999;33:1756-1759. https://doi.org/10.1016/S0043-1354(99)00005-6
  61. He G, Chen G. Lubricating oily sludge and its demulsification. Dry. Technol. 2002;20:1009-1018. https://doi.org/10.1081/DRT-120003774
  62. Fonts I, Gea G, Azuara M, Abrego J, Arauzo J. Sewage sludge pyrolysis for liquid production: A review. Renew. Sust. Energ. Rev. 2012;16:2781-2805. https://doi.org/10.1016/j.rser.2012.02.070
  63. Zhang SP, Yan YJ, Li YC, Ren ZW. Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour. Technol. 2005;96:545-550. https://doi.org/10.1016/j.biortech.2004.06.015
  64. Shen L, Zhang DK. An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed. Fuel 2003;82:465-472. https://doi.org/10.1016/S0016-2361(02)00294-6
  65. Schmidt H, Kaminsky W. Pyrolysis of oily sludge in a fluidised bed reactor. Chemosphere 2001;45:285-290. https://doi.org/10.1016/S0045-6535(00)00542-7
  66. Chang CY, Shie JL, Lin JP, Wu CH, Lee DJ, Chang CF. Major products obtained from the pyrolysis of oily sludge. Energ. Fuel. 2000:14;1176-1183. https://doi.org/10.1021/ef0000532
  67. Wang Z, Guo Q, Liu X, Cao C. Low temperature pyrolysis characteristics of oily sludge under various heating conditions. Energ. Fuel. 2007;21:957-962. https://doi.org/10.1021/ef060628g
  68. Czernik S, Bridgwater AV. Overview of applications of biomass fast pyrolysis oil. Energ. Fuel. 2004;18:590-598. https://doi.org/10.1021/ef034067u
  69. Chiaramonti D, Oasmaa A, Solantausta Y. Power generation using fast pyrolysis liquids from biomass. Renew. Sust. Energ. Rev. 2007;11:1056-1086. https://doi.org/10.1016/j.rser.2005.07.008
  70. Bridle TR, Pritchard R. Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci. Technol. 2004;50:169-175. https://doi.org/10.2166/wst.2004.0562
  71. Kim Y, Parker. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil. Bioresour. Technol. 2008;99:1409-1416. https://doi.org/10.1016/j.biortech.2007.01.056
  72. Bridle T, Unkovich I. Critical factors for sludge pyrolysis in Austrilia. Water 2002;29:43-48.
  73. Kwah TH, Maken S, Lee JW, Park BR, Min BR, Yoo YD. Environmental aspects of gasification of Korean municipal solid waste in a pilot plant. Fuel 2006;85:2012-2017. https://doi.org/10.1016/j.fuel.2006.03.012
  74. Appleton TJ, Colder RI, Kingman S, Lowndes IS, Read AG. Microwave technology for energy-efficient processing of waste. Appl. Energ. 2005;81:85-113. https://doi.org/10.1016/j.apenergy.2004.07.002
  75. Tan W, Yang X, Tan X. Study on demulsification of crude oil emulsions by microwave chemical method. Sep. Sci. Technol. 2007;42:1367-1377. https://doi.org/10.1080/01496390701193736
  76. Fang CS, Lai PMC. Microwave heating and separation of water- in-oil emulsion. J. Microw. Power Electrom. Energ. 1995;30: 46-57.
  77. Fortuny M, Oliveira CBZ, Melo RLFV, Nele M, Coutinho RCC, Santo AF. Effect of salinity, temperature, water content, and pH on the microwave demulsification of crude oil emulsion. Energ. Fuel. 2007;21:1358-1364. https://doi.org/10.1021/ef0603885
  78. Kuo CH, Lee CL. Treatment of oil/water emulsions using seawater- assisted microwave irradiation. Sep. Purif. Technol. 2010;74:288-293. https://doi.org/10.1016/j.seppur.2010.06.017
  79. Yang L, Nakhla G, Bassi A. Electro-kinetic dewatering of oily sludges. J. Hazard. Mater. 2005;125:130-140. https://doi.org/10.1016/j.jhazmat.2005.05.040
  80. Elektorowicz M, Habibi S. Sustaibable waste management: Recovery of fuels from petroleum sludge. Can. J. Civil. Eng. 2005;32:164-169. https://doi.org/10.1139/l04-122
  81. Li J, Song X, Hu G, Thring RW. Ultrasonic desorption of petroleum hydrocarbons from crude oil contaminated soils. J. Environ. Sci. Health A 2013;8:1378-1389.
  82. Song W, Li J, Zhang W, Hu X, Wang L. An experimental study on the remediation of phenanthrene in soil using ultrasound and soil washing. Environ. Earth Sci. 2012;66:1487-1496. https://doi.org/10.1007/s12665-011-1388-y
  83. Kim YU, Wang MC. Effect of ultrasound on oil removal from solids. Ultrason. Sonochem. 2003;41:539-542. https://doi.org/10.1016/S0041-624X(03)00168-9
  84. Ye G, Lu X, Han P, Peng F, Wang Y, Shen X. Application of ultrasound oncrude oil pretreatment. Chem. Eng. Process. 2008;47:2346-2350. https://doi.org/10.1016/j.cep.2008.01.010
  85. Chung HI, Kamon M. Ultrasonically enhanced electrokinetic remediation for removal of Pb and phenanthrene in contaminated soils. Eng. Geol. 2005;77:233-242. https://doi.org/10.1016/j.enggeo.2004.07.014
  86. Swamy KM, Narayana KL. Intensification of leaching process by dual-frequency ultrasound. Ultrason. Sonochem. 2001;8:341-346. https://doi.org/10.1016/S1350-4177(01)00067-0
  87. Zhang J, Li JB, Thring RW, Hu X, Song XY. Oil recovery from refinery oily sludge via ultrasound and freeze/thaw. J. Hazard. Mater. 2012;203-204:195-203. https://doi.org/10.1016/j.jhazmat.2011.12.016
  88. Feng D, Aldrich C. Sonochemical treatment of simulated soil contaminated with diesel. Adv. Environ. Res. 2000;4:103-112. https://doi.org/10.1016/S1093-0191(00)00008-3
  89. Na S, Park Y, Hwang A, Ha J, Kim Y, Khim J. Effect of ultrasound on surfactant-aided soil washing. JPN. J. Appl. Phys. 2007;46:4775-4778. https://doi.org/10.1143/JJAP.46.4775
  90. Canselier JP, Delmas H, Wilhelm AM, Abismail B. Ultrasound emulsification - An overview. J. Disper. Sci. Technol. 2007;23:333-349. https://doi.org/10.1080/01932690208984209
  91. Moosai R, Dawe RA. Gas attachment of oil droplets for gas flotation for oily wastewater cleanup. Sep. Purif. Technol. 2003;33:303-314. https://doi.org/10.1016/S1383-5866(03)00091-1
  92. Ramaswamy D, Kar DD, De S. A study on recovery of oil from sludge containing oil using froth flotation. J. Environ. Manage. 2007;85:150-154. https://doi.org/10.1016/j.jenvman.2006.08.009
  93. Al-Otoom A, Allawzi M, Al-Omari N, Al-Hsienat E. Bitumen recovery from Jordanian oil sand by froth flotation using petroleum cycles oil cuts. Energy 2010;35:4217-4225. https://doi.org/10.1016/j.energy.2010.07.008
  94. Stasiuk EN, Schramm LL. The influence of solvent and demulsifier additions on nascent froth formation during flotation recovery of Bitumen from Athabasca oil sands. Fuel Process. Technol. 2001;73:95-110. https://doi.org/10.1016/S0378-3820(01)00197-7
  95. Al-Shamrani AA, James A, Xiao H. Separation of oil from water by dissolved air flotation. Colloids Surf. A 2002;209:15-26. https://doi.org/10.1016/S0927-7757(02)00208-X
  96. Faksness LG, Grini PG, Daling PS. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water. Mar. Pollut. Bull. 2004;48:731-742. https://doi.org/10.1016/j.marpolbul.2003.10.018
  97. Guo SH, Li G, Qu JH, Liu XL. Improvement of acidification on dewaterability of oily sludge from flotation. Chem. Eng. J. 2011;168:746-751. https://doi.org/10.1016/j.cej.2011.01.070
  98. Scala F, Chirone R. Fluidized bed combustion of alternative solid fuels. Exp. Therm. Fluid. Sci. 2004;28:691-699. https://doi.org/10.1016/j.expthermflusci.2003.12.005
  99. Zhou L, Jiang X, Liu J. Characteristics of oily sludge combustion in circulating fluidized beds. J. Hazard. Mater. 2009;170:175-179. https://doi.org/10.1016/j.jhazmat.2009.04.109
  100. Sankaran S, Pandey S, Sumathy K. Experimental investigation on waste heatrecovery by refinery oily sludge incineration using fluidised-bed technique. J. Environ. Sci. Health. A 1998;33:829-845. https://doi.org/10.1080/10934529809376764
  101. Shi C, Day RL, Wu X, Tang M. Uptake of metal ions by autoclaved cement pastes. In: Proceedings of Materials Research Society, vol. 245, Materials Research Society, Boston; 1992. p. 141-149.
  102. Shi C, Shen X, Wu X, Tang M. Immobilization of radioactive wastes with portland and alkali-slag cement pastes. Il Cemento 1994;91:97-108.
  103. USEPA. Technology resource document - Solidification/stabilization and its application to waste materials. USEPA, June 1993 (EPA/530/R-93/012).
  104. Karamalidis AK, Voudrias EA. Cement-based stabilization/solidification of oil refinery sludge: Leaching behavior of alkanes and PAHs. J. Hazard. Mater. 2007;148:122-135. https://doi.org/10.1016/j.jhazmat.2007.02.032
  105. Poon CS, Qiao XC, Lin ZS. Pozzolanic properties of reject fly ash in blended cements pastes. Cement Concrete Res. 2003;33:1857-1865. https://doi.org/10.1016/S0008-8846(03)00213-8
  106. Sear LKA. Should you be using more PFA? In: Dundee University Conference, Global Construction, Ultimate Concrete Opportunities; 2005.
  107. Caldwell RJ, Cote P, Chao CC. Investigation of solidification for the immobilization of trace organics contaminants. Hazard. Waste Hazard. Mater. 1990;7:273-281. https://doi.org/10.1089/hwm.1990.7.273
  108. Leonard SA, Stegemann JA. Stabilization/solidification of petroleum drill cuttings. J. Hazard. Mater. 2010;174:463-472. https://doi.org/10.1016/j.jhazmat.2009.09.075
  109. Asna MZ, Md GS, Hilmi M. Immobilization of petroleum sludge incorporating portland cement and rice husk ash. Int. J. Chem. Eng. Appl. 2010;1:234-240.
  110. Ferrarese E, Andreottola G, Oprea IA. Remediation of PAH-contaminated sediments by chemical oxidation. J. Hazard. Mater. 2008;152:128-139. https://doi.org/10.1016/j.jhazmat.2007.06.080
  111. Zhang J. Treatment of refinery oily sludge using ultrasound, bio-surfactant,and advanced oxidation processes [M.Sc. thesis]. Prince George: Univ. of Northern British Columbia; 2012.
  112. Cui B, Cui F, Jing G, Xu S, Huo W, Liu S. Oxidation of oily sludge in supercritical water. J. Hazard. Mater. 2009;165:511-517. https://doi.org/10.1016/j.jhazmat.2008.10.008
  113. Powell SM, Paul M, Harvey PM, Stark SJ, Snipe I, Riddle JM. Biodegradation of petroleum products in experimental plots in Antarctic marine sediments is location dependent. Mar. Pollut. Bull. 2007;54:434-440. https://doi.org/10.1016/j.marpolbul.2006.11.018
  114. Khan FI, Husain T, Hejazi R. An overview and analysis of site remediation technologies. J. Environ. Manage. 2004;71:95-122. https://doi.org/10.1016/j.jenvman.2004.02.003
  115. Marin JA, Hernandez T, Garcia C. Bioremediation of oil refinery sludge by landfarming in semiarid conditions: Influence on soil microbial activity. Environ. Res. 2005;98:185-195. https://doi.org/10.1016/j.envres.2004.06.005
  116. Hejazi RF, Husain T. Landfarm performance under arid conditions. 2. Evaluation of parameters. Environ. Sci. Technol. 2004;38:2457-2469. https://doi.org/10.1021/es026045c
  117. Wang X, Wang QH, Wang SJ, Li FS, Guo GL. Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oily sludge. Bioresour. Technol. 2012;111:308-315. https://doi.org/10.1016/j.biortech.2012.01.158
  118. Liu WX, Luo YM, Teng Y, Li ZG, Ma LQ. Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environ. Geochem. Health 2010;32:23-29. https://doi.org/10.1007/s10653-009-9262-5
  119. Ouyang W, Liu H, Murygina V, Yu YY, Xiu ZD, Kalyuzhnyi S. Comparison of bio-augmentation and composting for remediation of oily sludge: A field-scale in China. Process. Biochem. 2005;40:3763-3768. https://doi.org/10.1016/j.procbio.2005.06.004
  120. Kriipsalu M, Marques M, Nammari DR, Hogland W. Biotreatment of oily sludge: The contribution of amendment material to the content of target contaminants, and the biodegradation dynamics. J. Hazard. Mater. 2007;148:616-622. https://doi.org/10.1016/j.jhazmat.2007.03.017
  121. Ayotamuno MJ, Okparanma RN, Nweneka EK, Ogaji SOT, Probert SD. Bioremediation of a sludge containing hydrocarbons. Appl. Energ. 2007;84:936-943. https://doi.org/10.1016/j.apenergy.2007.02.007
  122. Ward O, Singh A, van Hamme J. Accelerated biodegradation of petroleum hydrocarbon waste. J. Ind. Microbiol. Biotechnol. 2003;30:260-270. https://doi.org/10.1007/s10295-003-0042-4

피인용 문헌

  1. Production of rhamnolipids with different proportions of mono-rhamnolipids using crude glycerol and a comparison of their application potential for oil recovery from oily sludge vol.9, pp.6, 2019, https://doi.org/10.1039/c8ra09351b
  2. Microbial Surfactants: The Next Generation Multifunctional Biomolecules for Applications in the Petroleum Industry and Its Associated Environmental Remediation vol.7, pp.11, 2019, https://doi.org/10.3390/microorganisms7110581
  3. Anaerobic Co-Digestion of Oil Sludge with Corn Stover for Efficient Biogas Production vol.12, pp.5, 2020, https://doi.org/10.3390/su12051861
  4. Petroleum Hydrocarbon Removal from Wastewaters: A Review vol.8, pp.4, 2020, https://doi.org/10.3390/pr8040447
  5. Potential microbial drivers of biodegradation of polycyclic aromatic hydrocarbons in crude oil sludge using a composting technique vol.95, pp.5, 2019, https://doi.org/10.1002/jctb.6352
  6. Applied Cleaning Methods of Oil Residues from Industrial Tanks vol.8, pp.5, 2019, https://doi.org/10.3390/pr8050569
  7. Petroleum drill cuttings treatment using stabilization/solidification and biological process combination vol.29, pp.4, 2020, https://doi.org/10.1080/15320383.2020.1722982
  8. Oil Sludge and Biomass Waste Utilization as Densified Refuse-Derived Fuels for Alternative Fuels: Case Study of an Indonesia Cement Plant vol.24, pp.4, 2019, https://doi.org/10.1061/(asce)hz.2153-5515.0000511
  9. Development of energy-efficient techniques and technology for environmentally friendly microwave processing of oil sludge vol.578, 2019, https://doi.org/10.1088/1755-1315/578/1/012034
  10. Study on the Migration Characteristics of As, Pb, and Ni during Oily Sludge Incineration with CaO Additive vol.34, pp.12, 2019, https://doi.org/10.1021/acs.energyfuels.0c02844
  11. Stochastic risk assessment of urban soils contaminated by heavy metals in Kazakhstan vol.750, 2019, https://doi.org/10.1016/j.scitotenv.2020.141535
  12. Sludge Formation Analysis in Hydraulic Oil of Load Haul Dumper 811MK V Machine Running at Elevated Temperatures for Bioenergy Applications vol.2021, 2019, https://doi.org/10.1155/2021/4331809
  13. Application and development of pyrolysis technology in petroleum oily sludge treatment vol.26, pp.1, 2021, https://doi.org/10.4491/eer.2019.460
  14. Isolation and Characterization of Oil-Degrading Enterobacter sp. from Naturally Hydrocarbon-Contaminated Soils and Their Potential Use against the Bioremediation of Crude Oil vol.11, pp.8, 2021, https://doi.org/10.3390/app11083504
  15. Study on the ecological risk of heavy metals during oily sludge incineration with CaO additive vol.56, pp.7, 2019, https://doi.org/10.1080/10934529.2021.1927598
  16. Physicochemical Treatment of Oil Sediments in Oil Sludge Utilization vol.55, pp.4, 2019, https://doi.org/10.3103/s0361521921040042
  17. Enhanced biodegradation of total petroleum hydrocarbons by implementing a novel two-step bioaugmentation strategy using indigenous bacterial consortium vol.292, 2019, https://doi.org/10.1016/j.jenvman.2021.112746
  18. Bioremediation of Polycyclic Aromatic Hydrocarbons from Industry Contaminated Soil Using Indigenous Bacillus spp. vol.9, pp.9, 2021, https://doi.org/10.3390/pr9091606
  19. Methane production and toxicity evaluation of petroleum refinery biosludge through optimization of different modes of heat vol.154, 2019, https://doi.org/10.1016/j.psep.2021.08.019
  20. Assessing pollution removal efficiencies of some selected parameters by applying different remediation techniques for petroleum oily sludge vol.5, 2021, https://doi.org/10.1016/j.envc.2021.100268
  21. Migration of chlorinated compounds on products quality and dioxins releasing during pyrolysis of oily sludge with high chlorine content vol.306, 2019, https://doi.org/10.1016/j.fuel.2021.121744
  22. Performance of Fly Ash-Based Inorganic Polymer Mortar with Petroleum Sludge Ash vol.13, pp.23, 2019, https://doi.org/10.3390/polym13234143
  23. Extraction of barium oxide nanoparticles from petroleum waste sludge wastes vol.20, pp.4, 2019, https://doi.org/10.3233/mgc-210069
  24. Enhanced methane production and hydrocarbon removal from petroleum refinery sludge after Pseudomonas putida pretreatment and process scale-up vol.343, 2019, https://doi.org/10.1016/j.biortech.2021.126127
  25. Increased aromatics production by co-feeding waste oil sludge to the catalytic pyrolysis of cellulose vol.239, pp.no.pd, 2019, https://doi.org/10.1016/j.energy.2021.122331
  26. Product characteristics and potential energy recovery for microwave assisted pyrolysis of waste printed circuit boards in a continuously operated auger pyrolyser vol.239, pp.no.pd, 2019, https://doi.org/10.1016/j.energy.2021.122383