참고문헌
- Alavi, A.H. and Gandomi, A.H. (2012), "Energy-based numerical models for assessment of soil liquefaction", Geosci. Front., 3(4), 541-555. https://doi.org/10.1016/j.gsf.2011.12.008.
- Amini, P.F. and Noorzad, R. (2018), "Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic triaxial testing", Soil Dyn. Earthq. Eng., 104, 45-53. https://doi.org/10.1016/j.soildyn.2017.09.026.
- Ashmawy, A.K. and Bourrdeau, P.L. (1998), "Effect of geotextile reinforcement on the stress- strain and volumetric response of sand", Proceedings of the 6th International Conference on Geosynthetics, Atlanta, Georgia, U.S.A., March.
- Baziar, M.H. and Jafarian, Y. (2007), "Assessment of liquefaction triggering using strain energy concept and ANN model capacity energy" Soil Dyn. Earthq. Eng., 27(12), 1056-1072. https://doi.org/10.1016/j.soildyn.2007.03.007.
- Baziar, M.H., Jafarian, Y., Shahnazari, H., Movahed, V. and Tutunchian, M.A. (2011), "Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: An evolutionary approach", Comput. Geosci., 37(11), 1883-1893. https://doi.org/10.1016/j.cageo.2011.04.008.
- Cavallaro, A., Capilleri, P. and Grasso, S. (2018), "Site characterization by in situ and laboratory tests for liquefaction potential evaluation during Emilia Romagna earthquake", Geosciences, 8(7), 1-15. https://doi.org/10.3390/geosciences8070242.
- Chegenizadeh, A., Keramatikerman, M. and Nikraz, H. (2018), "Liquefaction resistance of fibre reinforced low-plasticity silt", Soil. Dyn. Earthq. Eng., 104, 372-377. https://doi.org/10.1016/j.soildyn.2017.11.004.
- Chen, C.W. and Loehr, J.E. (2008), "Undrained and drained triaxial tests of fiber-reinforced sand", Proceedings of the 4th Asian Regional Conference on Geosynthetics, Shanghai, China.
- Consoli, N.C., Montardo, J.P., Prietto, P.D.M. and Pasa, G.S. (2002), "Engineering behavior of a sand reinforced with plastic waste", J. Geotech. Geoenviron. Eng., 128(6), 462-472. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(462).
- Davis, R.O. and Berrill, J.B. (2001), "Pore pressure and dissipated energy in earthquakes-field verification", J. Geotech. Geoenviron. Eng., 127(3), 269-274. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(269).
- DeAlba, P., Seed, H.B. and Chan, C.K. (1976), "Sand liquefaction in large-scale simple shear tests", J. Geotech. Eng. Div., 102(GT9), 909-927 https://doi.org/10.1061/AJGEB6.0000322
- Diambra, A., Ibraim, E., Muir Wood, D. and Russell, A.R. (2010), "Fibre reinforced sands: Experiments and modelling", Geotext. Geomembr., 28(3), 238-250. https://doi.org/10.1016/j.geotexmem.2009.09.010.
- Diambra, A., Russell, R., Ibraim, E. and Wood, D. (2007), "Determination of fibre orientation distribution in reinforced sand", Geotechnique, 57(7), 623-628. https://doi.org/10.1680/geot.2007.57.7.623.
- Erken, A., Torabi, M., Sargin, S. and Darvishi, A. (2015), "Liquefaction resistance of reinforced sands", Proceedings of the 6th International Geotechnical Symposium on Disaster Mitigation in Special Geoenvironmental Conditions, Chennai, India, January.
- Figueroa, J., Saada, A., Liang, L. and Dahisaria, N. (1994), "Evaluation of soil liquefaction by energy principles", J. Geotech. Eng., 120(9), 1554-1569. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1554).
- Fioravante, V., Giretti, D., Abate, G., Aversa, S., Boldini, D., Capilleri, P. P., Cavallaro, A., Chamlagain, D., Crespellani, T., Dezi, F., Facciorusso, J., Ghinelli, A., Grass,o S., Lanzo, G., Madiai, C., Massimino, M. R., Maugeri, M., Pagliaroli, A., Ranieri, C., Tropeano, G., Santucci De Magistris, F., Sica, S., Silvestri, F. and Vannucchi, G. (2013), "Earthquake geotechnical engineering aspects: The 2012 Emilia Romagna Earthquake (Italy)", Proceedings of the 7th International Conference on Case Histories in Geotechnical Engineering, Wheeling, Chicago, U.S.A., April-May.
- Ghazavi, M. and Roustaei, M. (2010), "The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay", Cold Reg. Sci. Technol., 61(2-3), 125-131. https://doi.org/10.1016/j.coldregions.2009.12.005.
- Goktepe, B.A., Altun, S. and Lav, A.M. (2008), "Liquefaction resistance of sand reinforced with geosynthetics", Geosynth. Int., 15(5), 322-332. https://doi.org/10.1680/gein.2008.15.5.322.
- Green, R.A. (2001), "Energy-based evaluation and remediation of liquefiable soils", Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.
- Gullu, H. and Khudir, A. (2014), "Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime", Cold Reg. Sci. Technol., 106-107, 55-65. https://doi.org/10.1016/j.coldregions.2014.06.008.
- Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M. and Zadhoush, A.A. (2012), "Simple review of soil reinforcement by using natural and synthetic fibers", Constr. Build Mater., 30, 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045.
- Ibraim, E., Diambra, A., Muir Wood, D. and Russell, A.R. (2010), "Static liquefaction of fibre reinforced sand under monotonic loading", Geotext. Geomembr., 28(4), 374-385. https://doi.org/10.1016/j.geotexmem.2009.12.001.
- Ishihara, K. (1985), "Stability of natural deposits during earthquakes", Proceedings of the 11th International Conference on. Soil Mechanics and Foundation Engineering, San Francisco, California, U.S.A., August.
- Ishihara, K. (1993), "Liquefaction and flow failure during earthquakes", Geotechnique, 43(3), 351-415. https://doi.org/10.1680/geot.1993.43.3.351.
- Jafarian, Y., Towhata, I., Baziar M.H., Noorzad A. and Bahmanpour, A. (2012), "Strain energy-based evaluation of liquefaction and residual pore water pressure in sands using cyclic torsional shear experiments", Soil Dyn. Earthq. Eng., 35, 13-28. https://doi.org/10.1016/j.soildyn.2011.11.006.
- Jones, M. (1999), Mechanics of Composite Materials, Taylor and Francis, Philadelphia, Pennsylvania, U.S.A.
- Keramatikerman, M., Chegenizadeh, A. and Nikraz, H. (2017), "Experimental study on effect of fly ash on liquefaction resistance of sand", Soil Dyn. Earthq. Eng., 93, 1-6. https://doi.org/10.1016/j.soildyn.2016.11.012.
- Kokusho, T. (2013), "Liquefaction potential evaluations: Energy-based method versus stress-based method", Can. Geotech. J., 50(10), 1-12. https://doi.org/10.1139/cgj-2012-0456.
- Komak Panah, A., Yazdi, M. and Ghalandarzadeh, A. (2015), "Shaking table tests on soil retaining walls reinforced by polymeric strips", Geotext. Geomembr., 43(2), 148-161. https://doi.org/10.1016/j.geotexmem.2015.01.001.
- Krishnaswamy, N.R. and Isaac, N.T. (1994), "Liquefaction potential of reinforced sand", Geotext. Geomembr., 13(1), 23-41. https://doi.org/10.1016/0266-1144(94)90055-8.
- Krishnaswamy, N.R. and Isaac, N.T. (1995), "Liquefaction analysis of saturated reinforced granular soils", J. Geotech. Eng., 121(9), 645-651. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:9(645).
- Ladd, R.S. (1978), "Preparing test specimens using under compaction", Geotech. Test. J., 1(1), 16-23. https://doi.org/10.1520/GTJ10364J.
- Law, K.T., Cao, Y.L. and He, G.N. (1990), "An energy approach for assessing seismic liquefaction potential", Can. Geotech. J., 27(3), 20-29. https://doi.org/10.1139/t90-043.
- Liang, L. (1995), "Development of an energy method for evaluating the liquefaction potential of a soil deposit", Ph.D. Dissertation, Case Western Reserve University, Cleveland, Ohio, U.S.A.
- Lovisa, J., Shukla, S.K. and Sivakugan, N. (2010), "Shear strength of randomly distributed moist fibre-reinforced sand", Geosynth. Int., 17(2), 100-106. https://doi.org/10.1680/gein.2010.17.2.100
- Maheshwari, B.K., Singh, H.P. and Saran, S. (2012), "Effects of reinforcement on liquefaction resistance of Solani sand", J., Geotech. Geoenviron. Eng., 138(7), 831-840. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000645.
- Monkul, M.M., Gultekin, C., Gulver, M., Akin, O. and Bayat, E.E. (2015), "Estimation of liquefaction potential from dry and saturated sandy soils under drained constant volume cyclic simple shear loading", Soil Dyn. Earthq. Eng., 75, 27-36. https://doi.org/10.1016/j.soildyn.2015.03.019.
- Nemat-Nasser S. and Shokooh A. (1979), "A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing", Can. Geotech. J., 16(4), 659-678. https://doi.org/10.1139/t79-076.
- Noorzad, R. and Fardad, A.P. (2014), "Liquefaction resistance of Babolsar sand reinforced with randomly distributed fibers under cyclic loading", Soil Dyn. Earthq. Eng., 66, 281-292. https://doi.org/10.1016/j.soildyn.2014.07.011.
- Noorzad, R. and Omidvar, M. (2010), "Seismic displacement analysis of embankment dams with reinforced cohesive shell", Soil Dyn. Earthq. Eng., 30(11), 1149-1157. https://doi.org/10.1016/j.soildyn.2010.04.023.
- Orakoglu, M.E., Liu, J. and Niu, F. (2017), "Dynamic behavior of fiber-reinforced soil under freeze-thaw cycles", Soil Dyn. Earthq. Eng., 101, 269-284. https://doi.org/10.1016/j.soildyn.2017.07.022.
- Ostadan, F., Deng, N. and Arango, I. (1996), "Energy-based method for liquefaction potential evaluation", Phase I. feasibility study, U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, Building and Fire Research Laboratory, Gaithersburg, Maryland, U.S.A.
- Park, S. (2011), "Unconfined compressive strength and ductility of fiber-reinforced cemented sand", Constr. Build. Mater., 25, 1134-1138. https://doi.org/10.1016/j.conbuildmat.2010.07.017.
- Pincus, H.J., Maher, M.H. and Ho, Y.C. (1993), "Behavior of fiber reinforced cemented sand under static and cyclic loads", Geotech. Test. J., 16(3), 330-338. https://doi.org/10.1520/GTJ10054J.
- Sadek, S, Najjar, S.S. and Freiha, F. (2010), "Shear Strength of fiber reinforced sands", J. Geotech. Geoenviron. Eng., 136(3), 490-499. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000235.
- Sharma, V. and Kumar, A. (2017), "Influence of relative density of soil on performance of macro-synthetic and non-corrosive fiber-reinforced soil foundations", Geotext. Geomembr., 45(5), 499-507. https://doi.org/10.1016/j.geotexmem.2017.06.004.
- Simcock, J. Davis, R.O. Berrill, J.B. and Mallenger, G. (1983), "Cyclic triaxial tests with continuous measurement of dissipated energy", Geotech. Test. J., 6(1), 35-39. https://doi.org/10.1520/GTJ10822J.
- Sonmezer, Y.B. (2019), "Energy-based evaluation of liquefaction potential of uniform sands", Geomech. Eng., 17(2), 145-156. https://doi.org/10.12989/gae.2019.17.2.145.
- Tang, C.S., Wang, D.Y., Shi, B. and Li, J. (2016), "Effect of wetting-drying cycles on profile mechanical behavior of soils with different initial conditions", Catena, 139, 105-116. https://doi.org/10.1016/j.catena.2015.12.015.
- Towhata, I. (2008), Geotechnical Earthquake Engineering, Springer-Verlag, Berlin Heidelberg.
- Towhata, I. and Ishihara, K. (1985), "Shear work and pore water pressure in untrained shear", Soils Found., 25(3), 73-84. https://doi.org/10.3208/sandf1972.25.3_73.
- Vercueil, D., Billet, P. and Cordary, D. (1997), "Study of the liquefaction resistance of a saturated sand reinforced with geosynthetics", Soil Dyn. Earthq. Eng., 16(7-8), 417-425. https://doi.org/10.1016/S0267-7261(97)00018-3.
- Wang, S., Luna, R. and Stephenson, R.W. (2011), "A slurry consolidation approach to reconstitute low-plasticity silt specimens for laboratory triaxial testing", Geotech. Test. J., 34(4), 1-9. https://doi.org/10.1520/GTJ103529.
- Ye, B., Cheng, Z.R., Liu, C., Zhang, Y.D. and Lu, P. (2017), "Liquefaction resistance of sand reinforced with randomly distributed polypropylene fibres", Geosynth. Int., 24, 626-636. https://doi.org/10.1680/jgein.17.00029.
- Zaimoglu, A.S. (2010), "Freezing-thawing behavior of fine-grained soils reinforced with polypropylene fibers", Cold Reg. Sci. Technol., 60(1), 63-65. https://doi.org/10.1016/j.coldregions.2009.07.001.