DOI QR코드

DOI QR Code

Investigation of the liquefaction potential of fiber-reinforced sand

  • Received : 2019.04.28
  • Accepted : 2019.07.18
  • Published : 2019.08.10

Abstract

In the present, the liquefaction potential of fiber-reinforced sandy soils was investigated through the energy-based approach by conducting a series of strain-controlled cyclic simple shear tests. In the tests, the effects of the fiber properties, such as the fiber content, fiber length, relative density and effective stress, and the test parameters on sandy soil improvement were investigated. The results indicated that the fiber inclusion yields to higher cumulative liquefaction energy values compared to the unreinforced (plain) ground by increasing the number of cycles and shear strength needed for the liquefaction of the soil. This result reveals that the fiber inclusion increases the resistance of the soil to liquefaction. However, the increase in the fiber content was determined to be more effective on the test results compared to the fiber length. Furthermore, the increase in the relative density of the soil increases the efficiency of the fibers on soil strengthening.

Keywords

References

  1. Alavi, A.H. and Gandomi, A.H. (2012), "Energy-based numerical models for assessment of soil liquefaction", Geosci. Front., 3(4), 541-555. https://doi.org/10.1016/j.gsf.2011.12.008.
  2. Amini, P.F. and Noorzad, R. (2018), "Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic triaxial testing", Soil Dyn. Earthq. Eng., 104, 45-53. https://doi.org/10.1016/j.soildyn.2017.09.026.
  3. Ashmawy, A.K. and Bourrdeau, P.L. (1998), "Effect of geotextile reinforcement on the stress- strain and volumetric response of sand", Proceedings of the 6th International Conference on Geosynthetics, Atlanta, Georgia, U.S.A., March.
  4. Baziar, M.H. and Jafarian, Y. (2007), "Assessment of liquefaction triggering using strain energy concept and ANN model capacity energy" Soil Dyn. Earthq. Eng., 27(12), 1056-1072. https://doi.org/10.1016/j.soildyn.2007.03.007.
  5. Baziar, M.H., Jafarian, Y., Shahnazari, H., Movahed, V. and Tutunchian, M.A. (2011), "Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: An evolutionary approach", Comput. Geosci., 37(11), 1883-1893. https://doi.org/10.1016/j.cageo.2011.04.008.
  6. Cavallaro, A., Capilleri, P. and Grasso, S. (2018), "Site characterization by in situ and laboratory tests for liquefaction potential evaluation during Emilia Romagna earthquake", Geosciences, 8(7), 1-15. https://doi.org/10.3390/geosciences8070242.
  7. Chegenizadeh, A., Keramatikerman, M. and Nikraz, H. (2018), "Liquefaction resistance of fibre reinforced low-plasticity silt", Soil. Dyn. Earthq. Eng., 104, 372-377. https://doi.org/10.1016/j.soildyn.2017.11.004.
  8. Chen, C.W. and Loehr, J.E. (2008), "Undrained and drained triaxial tests of fiber-reinforced sand", Proceedings of the 4th Asian Regional Conference on Geosynthetics, Shanghai, China.
  9. Consoli, N.C., Montardo, J.P., Prietto, P.D.M. and Pasa, G.S. (2002), "Engineering behavior of a sand reinforced with plastic waste", J. Geotech. Geoenviron. Eng., 128(6), 462-472. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(462).
  10. Davis, R.O. and Berrill, J.B. (2001), "Pore pressure and dissipated energy in earthquakes-field verification", J. Geotech. Geoenviron. Eng., 127(3), 269-274. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(269).
  11. DeAlba, P., Seed, H.B. and Chan, C.K. (1976), "Sand liquefaction in large-scale simple shear tests", J. Geotech. Eng. Div., 102(GT9), 909-927 https://doi.org/10.1061/AJGEB6.0000322
  12. Diambra, A., Ibraim, E., Muir Wood, D. and Russell, A.R. (2010), "Fibre reinforced sands: Experiments and modelling", Geotext. Geomembr., 28(3), 238-250. https://doi.org/10.1016/j.geotexmem.2009.09.010.
  13. Diambra, A., Russell, R., Ibraim, E. and Wood, D. (2007), "Determination of fibre orientation distribution in reinforced sand", Geotechnique, 57(7), 623-628. https://doi.org/10.1680/geot.2007.57.7.623.
  14. Erken, A., Torabi, M., Sargin, S. and Darvishi, A. (2015), "Liquefaction resistance of reinforced sands", Proceedings of the 6th International Geotechnical Symposium on Disaster Mitigation in Special Geoenvironmental Conditions, Chennai, India, January.
  15. Figueroa, J., Saada, A., Liang, L. and Dahisaria, N. (1994), "Evaluation of soil liquefaction by energy principles", J. Geotech. Eng., 120(9), 1554-1569. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1554).
  16. Fioravante, V., Giretti, D., Abate, G., Aversa, S., Boldini, D., Capilleri, P. P., Cavallaro, A., Chamlagain, D., Crespellani, T., Dezi, F., Facciorusso, J., Ghinelli, A., Grass,o S., Lanzo, G., Madiai, C., Massimino, M. R., Maugeri, M., Pagliaroli, A., Ranieri, C., Tropeano, G., Santucci De Magistris, F., Sica, S., Silvestri, F. and Vannucchi, G. (2013), "Earthquake geotechnical engineering aspects: The 2012 Emilia Romagna Earthquake (Italy)", Proceedings of the 7th International Conference on Case Histories in Geotechnical Engineering, Wheeling, Chicago, U.S.A., April-May.
  17. Ghazavi, M. and Roustaei, M. (2010), "The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay", Cold Reg. Sci. Technol., 61(2-3), 125-131. https://doi.org/10.1016/j.coldregions.2009.12.005.
  18. Goktepe, B.A., Altun, S. and Lav, A.M. (2008), "Liquefaction resistance of sand reinforced with geosynthetics", Geosynth. Int., 15(5), 322-332. https://doi.org/10.1680/gein.2008.15.5.322.
  19. Green, R.A. (2001), "Energy-based evaluation and remediation of liquefiable soils", Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.
  20. Gullu, H. and Khudir, A. (2014), "Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime", Cold Reg. Sci. Technol., 106-107, 55-65. https://doi.org/10.1016/j.coldregions.2014.06.008.
  21. Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M. and Zadhoush, A.A. (2012), "Simple review of soil reinforcement by using natural and synthetic fibers", Constr. Build Mater., 30, 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045.
  22. Ibraim, E., Diambra, A., Muir Wood, D. and Russell, A.R. (2010), "Static liquefaction of fibre reinforced sand under monotonic loading", Geotext. Geomembr., 28(4), 374-385. https://doi.org/10.1016/j.geotexmem.2009.12.001.
  23. Ishihara, K. (1985), "Stability of natural deposits during earthquakes", Proceedings of the 11th International Conference on. Soil Mechanics and Foundation Engineering, San Francisco, California, U.S.A., August.
  24. Ishihara, K. (1993), "Liquefaction and flow failure during earthquakes", Geotechnique, 43(3), 351-415. https://doi.org/10.1680/geot.1993.43.3.351.
  25. Jafarian, Y., Towhata, I., Baziar M.H., Noorzad A. and Bahmanpour, A. (2012), "Strain energy-based evaluation of liquefaction and residual pore water pressure in sands using cyclic torsional shear experiments", Soil Dyn. Earthq. Eng., 35, 13-28. https://doi.org/10.1016/j.soildyn.2011.11.006.
  26. Jones, M. (1999), Mechanics of Composite Materials, Taylor and Francis, Philadelphia, Pennsylvania, U.S.A.
  27. Keramatikerman, M., Chegenizadeh, A. and Nikraz, H. (2017), "Experimental study on effect of fly ash on liquefaction resistance of sand", Soil Dyn. Earthq. Eng., 93, 1-6. https://doi.org/10.1016/j.soildyn.2016.11.012.
  28. Kokusho, T. (2013), "Liquefaction potential evaluations: Energy-based method versus stress-based method", Can. Geotech. J., 50(10), 1-12. https://doi.org/10.1139/cgj-2012-0456.
  29. Komak Panah, A., Yazdi, M. and Ghalandarzadeh, A. (2015), "Shaking table tests on soil retaining walls reinforced by polymeric strips", Geotext. Geomembr., 43(2), 148-161. https://doi.org/10.1016/j.geotexmem.2015.01.001.
  30. Krishnaswamy, N.R. and Isaac, N.T. (1994), "Liquefaction potential of reinforced sand", Geotext. Geomembr., 13(1), 23-41. https://doi.org/10.1016/0266-1144(94)90055-8.
  31. Krishnaswamy, N.R. and Isaac, N.T. (1995), "Liquefaction analysis of saturated reinforced granular soils", J. Geotech. Eng., 121(9), 645-651. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:9(645).
  32. Ladd, R.S. (1978), "Preparing test specimens using under compaction", Geotech. Test. J., 1(1), 16-23. https://doi.org/10.1520/GTJ10364J.
  33. Law, K.T., Cao, Y.L. and He, G.N. (1990), "An energy approach for assessing seismic liquefaction potential", Can. Geotech. J., 27(3), 20-29. https://doi.org/10.1139/t90-043.
  34. Liang, L. (1995), "Development of an energy method for evaluating the liquefaction potential of a soil deposit", Ph.D. Dissertation, Case Western Reserve University, Cleveland, Ohio, U.S.A.
  35. Lovisa, J., Shukla, S.K. and Sivakugan, N. (2010), "Shear strength of randomly distributed moist fibre-reinforced sand", Geosynth. Int., 17(2), 100-106. https://doi.org/10.1680/gein.2010.17.2.100
  36. Maheshwari, B.K., Singh, H.P. and Saran, S. (2012), "Effects of reinforcement on liquefaction resistance of Solani sand", J., Geotech. Geoenviron. Eng., 138(7), 831-840. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000645.
  37. Monkul, M.M., Gultekin, C., Gulver, M., Akin, O. and Bayat, E.E. (2015), "Estimation of liquefaction potential from dry and saturated sandy soils under drained constant volume cyclic simple shear loading", Soil Dyn. Earthq. Eng., 75, 27-36. https://doi.org/10.1016/j.soildyn.2015.03.019.
  38. Nemat-Nasser S. and Shokooh A. (1979), "A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing", Can. Geotech. J., 16(4), 659-678. https://doi.org/10.1139/t79-076.
  39. Noorzad, R. and Fardad, A.P. (2014), "Liquefaction resistance of Babolsar sand reinforced with randomly distributed fibers under cyclic loading", Soil Dyn. Earthq. Eng., 66, 281-292. https://doi.org/10.1016/j.soildyn.2014.07.011.
  40. Noorzad, R. and Omidvar, M. (2010), "Seismic displacement analysis of embankment dams with reinforced cohesive shell", Soil Dyn. Earthq. Eng., 30(11), 1149-1157. https://doi.org/10.1016/j.soildyn.2010.04.023.
  41. Orakoglu, M.E., Liu, J. and Niu, F. (2017), "Dynamic behavior of fiber-reinforced soil under freeze-thaw cycles", Soil Dyn. Earthq. Eng., 101, 269-284. https://doi.org/10.1016/j.soildyn.2017.07.022.
  42. Ostadan, F., Deng, N. and Arango, I. (1996), "Energy-based method for liquefaction potential evaluation", Phase I. feasibility study, U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, Building and Fire Research Laboratory, Gaithersburg, Maryland, U.S.A.
  43. Park, S. (2011), "Unconfined compressive strength and ductility of fiber-reinforced cemented sand", Constr. Build. Mater., 25, 1134-1138. https://doi.org/10.1016/j.conbuildmat.2010.07.017.
  44. Pincus, H.J., Maher, M.H. and Ho, Y.C. (1993), "Behavior of fiber reinforced cemented sand under static and cyclic loads", Geotech. Test. J., 16(3), 330-338. https://doi.org/10.1520/GTJ10054J.
  45. Sadek, S, Najjar, S.S. and Freiha, F. (2010), "Shear Strength of fiber reinforced sands", J. Geotech. Geoenviron. Eng., 136(3), 490-499. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000235.
  46. Sharma, V. and Kumar, A. (2017), "Influence of relative density of soil on performance of macro-synthetic and non-corrosive fiber-reinforced soil foundations", Geotext. Geomembr., 45(5), 499-507. https://doi.org/10.1016/j.geotexmem.2017.06.004.
  47. Simcock, J. Davis, R.O. Berrill, J.B. and Mallenger, G. (1983), "Cyclic triaxial tests with continuous measurement of dissipated energy", Geotech. Test. J., 6(1), 35-39. https://doi.org/10.1520/GTJ10822J.
  48. Sonmezer, Y.B. (2019), "Energy-based evaluation of liquefaction potential of uniform sands", Geomech. Eng., 17(2), 145-156. https://doi.org/10.12989/gae.2019.17.2.145.
  49. Tang, C.S., Wang, D.Y., Shi, B. and Li, J. (2016), "Effect of wetting-drying cycles on profile mechanical behavior of soils with different initial conditions", Catena, 139, 105-116. https://doi.org/10.1016/j.catena.2015.12.015.
  50. Towhata, I. (2008), Geotechnical Earthquake Engineering, Springer-Verlag, Berlin Heidelberg.
  51. Towhata, I. and Ishihara, K. (1985), "Shear work and pore water pressure in untrained shear", Soils Found., 25(3), 73-84. https://doi.org/10.3208/sandf1972.25.3_73.
  52. Vercueil, D., Billet, P. and Cordary, D. (1997), "Study of the liquefaction resistance of a saturated sand reinforced with geosynthetics", Soil Dyn. Earthq. Eng., 16(7-8), 417-425. https://doi.org/10.1016/S0267-7261(97)00018-3.
  53. Wang, S., Luna, R. and Stephenson, R.W. (2011), "A slurry consolidation approach to reconstitute low-plasticity silt specimens for laboratory triaxial testing", Geotech. Test. J., 34(4), 1-9. https://doi.org/10.1520/GTJ103529.
  54. Ye, B., Cheng, Z.R., Liu, C., Zhang, Y.D. and Lu, P. (2017), "Liquefaction resistance of sand reinforced with randomly distributed polypropylene fibres", Geosynth. Int., 24, 626-636. https://doi.org/10.1680/jgein.17.00029.
  55. Zaimoglu, A.S. (2010), "Freezing-thawing behavior of fine-grained soils reinforced with polypropylene fibers", Cold Reg. Sci. Technol., 60(1), 63-65. https://doi.org/10.1016/j.coldregions.2009.07.001.