DOI QR코드

DOI QR Code

Effect of Different Forage Source and Nutrient Levels in Diet on in vitro Goat Rumen Fermentation and Methane Production

조사료의 종류와 사료 내 영양소 수준이 흑염소의 반추위 in vitro 발효성상과 메탄생성에 미치는 영향

  • 이진욱 (국립축산과학원 가축유전자원센터) ;
  • 김관우 (국립축산과학원 가축유전자원센터) ;
  • 류채화 (전북대학교 입학본부) ;
  • 이성수 (국립축산과학원 가축유전자원센터) ;
  • 이상훈 (국립축산과학원 가축유전자원센터) ;
  • 전다연 (국립축산과학원 가축유전자원센터) ;
  • 노희종 (국립축산과학원 가축유전자원센터) ;
  • 최낙진 (전북대학교 동물자원과학과)
  • Received : 2019.09.30
  • Accepted : 2019.11.14
  • Published : 2019.11.30

Abstract

The present study investigated the effect of forage sources and their inclusion levels in diet on the rumen fermentation of Korea traditional goat. Timothy and alfalfa were used as forage sources. Forages were mixed with concentrate diet in different ratios. The ratios of forage to concentrate diets were varied to 1:9, 5:5 and 9:1. The rumen fluid of goat was gathered from slaughter house. Dry matter digestibility was decreased and methane production was increased as forage levels in diet was increased. When forage sources, timothy and alfalfa, were compared, groups with timothy showed greater methane production than the groups of alfalfa. Molar ratio of produced acetate and valerate were increased when forage level in diet was increased. In the case of propionate and butyrate, they were decreased as elevated forage levels in diet. The result of this study provided a basic information for rumen fermentation of Korean traditional goat and these information could be applied in the development of nutritional and feeding strategy.

Keywords

References

  1. Alemu, A. W., J. Dijkstra, A. Bannink, J. France, and E. Kebreab. 2011. Rumen stoichiometric models and their contribution and challenges in predicting enteric methane production. Anim. Feed Sci. Technol. 166-167: 761-778. https://doi.org/10.1016/j.anifeedsci.2011.04.054
  2. Bannink, A., J. Kogut, J. Dijkstra, J. France, E. Kebreab, A. M. Van Vuuren, and S. Tamminga. 2006. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J. Theor. Biol. 238: 36-51. https://doi.org/10.1016/j.jtbi.2005.05.026
  3. Benchaar, C., C. Pomar, and J. Chiquette. 2001. Evaluation of dietary strategies to reduce methane production in ruminants: a modelling approach. Can. J. Anim. Sci. 81: 563-574. https://doi.org/10.4141/A00-119
  4. Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8: 130-132. https://doi.org/10.1093/clinchem/8.2.130
  5. Choi, Y. J., N. J. Choi, S. H. Park, J. Y. Song, J. S. Um, J. Y. Ko, and J. K. Ha. 2002. Effect of Passtein$^{(R)}$ supplement on protein degradability ruminal fermentation and nutrient digestibility. J. Anim. Sci. Technol. 44(5): 549-560. https://doi.org/10.5187/JAST.2002.44.5.549
  6. Devendra, C. and M. Burns. 1983. Goat production in the tropics. Technical Communications. Commonwealth Agricultural Bureaux, England VII.
  7. Erwin, E. S., G. J. Marco, and E. M. Emery. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy. Sci. 44: 1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  8. Gihad, E. A., T. M. El-Bedawy, and A. Z. Mehrez. 1980. Fiber digestibility by goats and sheep. J. Dairy. Sci. 63: 1701-1706. https://doi.org/10.3168/jds.S0022-0302(80)83131-6
  9. Hwang, H. S. 2014a. Effects of medicinal herb extracts on rumen fermentation, microbial growth and methane emission. Ph.D. Thesis. Gyeongsang National University. Jinju.
  10. Hwang B. S. 2014b. Effects of the grazing and barn feeding system on growth performance and carcass characteristics in Korean black goats. J. Agri. Life Sci. 48(2): 123-131. https://doi.org/10.14397/jals.2014.48.2.123
  11. IPCC (Intergovernmental Panel on Climate Change). 2006. IPCC Guidelines for national green house gas inventories. Chapter 10: Emission from live stock and manure management.
  12. Islam, M., H. Abe, Y. Hayashi, and F. Terada. 2000. Effects of feeding Italian ryegrass with corn on rumen environment, nutrient digestibility, methane emission, and energy and nitrogen utilization at two intake levels by goats. Small. Ruminant. Res. 38: 165-174 https://doi.org/10.1016/S0921-4488(00)00148-6
  13. Jeong, C. H., K. I. Seo, and K. H. Shin. 2006. Effects of fermented grape feeds on pyhsicochemical properties of Korean goat meat. J. Korean. Soc. Food. Sci. Nutr. 35: 145-149. https://doi.org/10.3746/JKFN.2006.35.2.145
  14. Kim, S. W., S. H. Yoon, J. H. Kim, Y. G. Ko, D. H. Kim, G. H. Kang, Y. S. Kim, S. M. Lee, and S. W. Suh. 2012. Effects of feeding levels of concentrate on the growth, carcass characteristics and economic evaluation in feeds based on rice-straw of Korean black goats. J. Kor. Grassl. Forage. Sci. 32: 429-436. https://doi.org/10.5333/KGFS.2012.32.4.429
  15. Lee, A. L., H. R. Park, M. S. Kim, S. Cho, and N. J. Choi. 2014. A comparative study between microbial fermentation and non-fermentation on biological activities of medicinal plants with emphasis on enteric methane reduction. Korean. J. Org. Agric. 22: 801-813. https://doi.org/10.11625/KJOA.2014.22.4.801
  16. Moore, J. 1970. Procedures for the two-stage in vitro digestion of forages. Nutrition Research Techniques for Domestic and Wild animals 1: 5001-5003.
  17. Na, Y., S. Hwang, Y. Choi, G. Park, and S. Lee. 2018. Nutrient digestibility and green house gas emission in castrated goats (Capra hircus) fed various roughage sources. J. Kor. Grassl. Forage. Sci. 38: 39-43. https://doi.org/10.5333/KGFS.2018.38.1.39
  18. Ok, J. U., Y. C. Baek, K. H. Kim, S. C. Lee, Y. J. Seol, K. Y. Lee, C. W. Choi, C. O. Jeon, S. S. Lee, S. S. Lee, and Y. K. Oh. 2011. Effects of saponin contained plant extracts on ruminal fermentation characteristics and methane production. J. Anim. Sci. Technol. 53: 147-154. https://doi.org/10.5187/JAST.2011.53.2.147
  19. Ok, J. U., D. U. Ha, S. J. Lee, E. T. Kim, S. S. Lee, Y. K. Oh, K. H. Kim, and S. S. Lee. 2012. Effects of organic acids on in vitro ruminal fermentation characteristics and methane emission. J. Life Sci. 22: 1324-1329. https://doi.org/10.5352/JLS.2012.22.10.1324
  20. Plaizier, J. C., D. O. Krause, G. N. Gozho, and B. W. McBride. 2009. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet. J. 176: 21-31. https://doi.org/10.1016/j.tvjl.2007.12.016
  21. R core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
  22. Tilley, J. M. A. and R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc. 18: 104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  23. Troelsen, J. E. and D. J. Hanel. 1966. Ruminant digestion in vitro as affected by inoculum donor, collection day, and fermentation time. Can. J. Anim. Sci. 46: 149-156. https://doi.org/10.4141/cjas66-022
  24. Varga, G. A., H. F. Tyrrell, D. R. Waldo, G. B. Huntington, and B. P. Glenn. 1985. Effect of alfalfa or orchard grass silage on energy and nitrogen utilization for gorwth by Holstein steers.: P. W. Mue, H. F. Tyrell, P. J. Reynolds (eds). Energy Metabolism of Farm Animals. Ronman and Littlefield, USA. pp. 86-89.
  25. Zhong, R., Y. Fang, H. Sun, M. Wang, and D. Zhou. 2016. Rumen methane output and fermentation characteristics of gramineous forage and leguminous forage at differing harvest dates determined using an in vitro gas production technique. J. Integr. Agric. 15: 414-423. https://doi.org/10.1016/s2095-3119(15)61036-x