DOI QR코드

DOI QR Code

A new principles for implementation and operation of foundations for machines: A review of recent advances

  • Golewski, Grzegorz Ludwik (Department of Structural Engineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology)
  • Received : 2019.02.02
  • Accepted : 2019.04.05
  • Published : 2019.08.10

Abstract

The aim of this paper is to present the most important issues on the implementation, operation and maintenance of foundation for machines. The article presents the newest solutions both in terms of technology implementation as well as materials used in construction of such structures. Foundations for machines are special building structures used to transfer loads from an operating machine to the subsoil. The purpose of these foundations is not just to transfer loads, but also to reduce vibrations occurring during operation of the machine, i.e. their damping and preventing redistribution to other elements of the building. It should be noted that foundations for machines (particularly foundations for hammers) are the most dynamically loaded building structures. For these reasons, they require precise static and dynamic calculations, accuracy in their implementation and care for them after they have been made. Therefore, the paper in detail present the guidelines regarding: design, construction and maintenance of structures of this type. Furthermore, the most important parameters and characteristics of materials used for the construction of these foundations are described. As a result of the conducted analyzes, it was found that the concrete mix, in foundations for machines, should have a low water/binder ratio. For its execution, it is necessary to use broken aggregates from igneous rocks and binders modified with mineral additives and chemical admixtures. On the other hand, the reinforcement of composites should contain a large amount of structural reinforcement to prevent shrinkage cracks.

Keywords

Acknowledgement

Supported by : Ministry of Science and Higher Education

References

  1. Aliha, M.R.M., Heidari-Rarani, M., Shokrieh, M.M. and Ayatollahi, M.R. (2012), "Experimental determination of tensile strength and KIc of polymer concretes using semi-circular bend (SCB) specimens", Struct. Eng. Mech., 43(6), 823-833. https://doi.org/10.12989/sem.2012.43.6.823.
  2. Aliha, M.R.M., Linul, E., Bahmani, A. and Marsavina, L. (2018a), "Experimental and theoretical fracture toughness investigation of PUR foams under mixed mode I+III loading", Pol. Test. 67, 75-83. https://doi.org/10.1016/j.polymertesting.2018.02.015.
  3. Aliha, M.R.M., Razmi, A. and Mousavi, A. (2018b), "Fracture study of concrete composires with synthetic fibers additive under modes I and III using ENDB specimen", Constr. Build. Mater., 190, 612-622. https://doi.org/10.1016/j.conbuildmat.2018.09.149
  4. Berto, F., Ayatollahi M. and Marsavina, L. (2017), "Mixed mode fracture", Theor. Appl. Fract. Mech., 91, 1. https://doi.org/10.1016/j.tafmec.2017.05.012.
  5. Bhandari, P.K. and Sengupta, A. (2014), "Dynamic analysis of machine foundation", Int. J. Innov. Res. Scie. Eng. Technol., 3 (Special Issue 4), 169-176.
  6. Bhatia, K.G. (2011), Foundations for Industrial Machines: Handbook for Practising Engineers (Second Edition), D-CAD Publishers, New Delhi, India.
  7. Bicer, A. (2018), "Effect of fly ash particle size on thermal and mechanical properties of fly ash-cement composites", Therm. Sci. Eng. Progr., 8, 78-82. https://doi.org/10.1016/j.tsep.2018.07.014.
  8. Blaszczynski, T. (2011a), "Assessment of RC structures influencedby crude oil products", Arch. Civ. Mech. Eng., 11(1), 5-17. https://doi.org/10.1016/S1644-9665(12)60170-8.
  9. Blaszczynski, T. (2011b), "The influence of crude oil products on RC structure destruction", J. Civ. Eng. Manag., 17(1), 146-156. https://doi.org/10.3846/13923730.2011.561522.
  10. Chmielewski, T. and Zembaty, Z. (1998), Podstawy dynamiki budowli, Arkady, Warsaw.
  11. Craciun, E.M. (2008), "Energy criteria for crack propagation in prestresses elastic composites", Sol. Mech, Appl. 154, 193-237. https://doi.org/10.1007/978-1-4020-8772-1_7.
  12. Fakoor, M., Rafiee, R. and Zare, S. (2019), "Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials", Steel. Compos. Struct., 30(1), 1-12. https://doi.org/10.12989/scs.2019.30.1.001.
  13. Golaszewski, J. (2012), "Influence of cement properties on new generation superplasticizers performance", Constr. Build. Mater., 35, 586-596. https://doi.org/10.1016/j.conbuildmat.2012.04.070.
  14. Golewski, G.L. (2019a), "Measurement of fracture mechanics parameters of concrete containing fly ash thanks to use of Digital Image Correlation (DIC) method", Measurement, 135, 96-105. https://doi.org/10.1016/j.measurement.2018.11.032.
  15. Golewski, G.L. (2019b), "The influence of microcrack width on the mechanical parameters in concrete with the addition of fly ash: Consideration of technological and ecological benefits", Constr. Build. Mater., 197, 849-861. https://doi.org/10.1016/j.conbuildmat.2018.08.157.
  16. Golewski, G.L. (2018a), "An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives", Compos. Struct., 200, 515-520. https://doi.org/10.1016/j.compstruct.2018.05.144.
  17. Golewski, G.L. (2018b), "Effect of curing time on the fracture toughness of fly ash concrete composites", Compos. Struct., 185, 105-112. https://doi.org/10.1016/j.compstruct.2017.10.090.
  18. Golewski, G.L. (2018c), "Green concrete composite incorporating fly ash with high strength and fracture toughness", J. Clean. Prod., 172, 218-226. https://doi.org/10.1016/j.jclepro.2017.10.065.
  19. Golewski, G.L. (2018d), "Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA)", J. Hazard. Mater., 357, 298-304. https://doi.org/10.1016/j.jhazmat.2018.06.016.
  20. Golewski, G. L. (2017a), "Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading", Struct. Eng. Mech., 62(1), 1-9. https://doi.org/10.12989/sem.2017.62.1.001.
  21. Golewski, G.L. (2017b), "Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture", J. Civ. Eng. Manag, 23(5) 613-620. https://doi.org/10.3846/13923730.2016.1217923.
  22. Golewski, G.L. (2017c), "Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure", Mater. Charact., 134, 335-346. https://doi.org/10.1016/j.matchar.2017.11.008.
  23. Golewski, G.L. (2017d), "Generalized fracture toughness and compressive strength of sustainable concrete including low calcium fly ash", Materials, 10(12), 1393. https://doi.org/10.3390/ma10121393.
  24. Golewski, G.L. (2015), "Studies of natural radioactivity of concrete with siliceous fly ash addition", Cem. Wapno Beton, 2, 106-114.
  25. Golewski, G.L. and Sadowski, T. (2017), "The fracture toughness the KIIIc of concretes with F fly ash (FA) additive", Constr. Build. Mater., 143, 444-454. https://doi.org/10.1016/j.conbuildmat.2017.03.137.
  26. Golewski, G.L. and Sadowski, T. (2016a), "A study of mode III fracture toughness in young and mature concrete with fly ash additive", Sol. Stat. Phenom., 254, 120-125. https://doi.org/10.4028/www.scientific.net/SSP.254.120.
  27. Golewski, G.L. and Sadowski, T. (2016b), "Macroscopic evaluation of fracture processes in fly ash concrete", Sol. Stat. Phenom., 254, 188-193. https://doi.org/10.4028/www.scientific.net/SSP.254.188.
  28. Golewski, G.L. and Sadowski, T. (2014), "An analysis of shear fracture toughness KIIc and microstructure in concretes containing fly-ash", Constr. Build. Mater., 51, 207-214. https://doi.org/10.1016/j.conbuildmat.2013.10.044.
  29. Golewski, G.L. and Sadowski, T. (2012), "Experimental investigation and numerical modeling fracture processes under Mode II in concrete composites containing fly-ash additive at early age", Sol. Stat. Phenom.,188, 158-163. https://doi.org/10.4028/www.scientific.net/SSP.188.158.
  30. Golewski, G. and Sadowski, T. (2006), "Fracture toughness at shear (mode II) of concretes made of natural and broken aggregates", Brittle Matrix Compos., 8, 537-546. https://doi.org/10.1533/9780857093080.537.
  31. Gorski, P., Stankiewicz, B. and Tatara, M. (2018), "Structural evaluation of all-GFRP cable-stayed footbridge after 20 years of service life", Steel. Compos. Struct., 29(4), 527-543. https://doi.org/10.12989/scs.2018.29.4.527.
  32. Gorzelanczyk, T., Hola J., Sadowski, L. and Schabowicz, K. (2016), "Non-destructive identification of cracks in unilaterally accessible massive concrete walls in hydroelectric power plant", Arch. Civ. Mech. Eng., 16(3), 413-421. https://doi.org/10.1016/j.acme.2016.02.009.
  33. Guan, J., Li, C., Wang, J., Qing, L., Song, Z. and Liu, Z. (2019), "Determination of fracture parameter and prediction of structural fracture using various concreto specimen types", Theor. Appl. Fract. Mech., 100, 114-127. https://doi.org/10.1016/j.tafmec.2019.01.008.
  34. Guodong, L., Jiangjiang, Y., Peng, C. and Zhengyi, R. (2018), "Experimental and numerical investigation on I-II mixed mode fracture of concrete based on the Monte Carlo random aggregate distribution", Constr. Build. Mater., 191, 523-534. https://doi.org/10.1016/j.conbuildmat.2018.09.195.
  35. Hola, J., Sadowski, L. and Schabowicz, K. (2011), "Nondestructive identification of delaminations in concrete floor toopings with acoustic methods", Autom. Constr., 20(7), 799-807. https://doi.org/10.1016/j.autcon.2011.02.002.
  36. Hu, J., Liang, H. and Lu, Y. (2018), "Behavior of steel-concrete corrosion-damaged RC columns subjected to eccentric load", Steel. Compos. Struct., 29(6), 689-701. https://doi.org/10.12989/scs.2018.29.6.689.
  37. Kameswara Rao, N.S.V. (2011), Foundation Design: Theory and Practice. Chapter 11 - Machine Foundations, John Wiley and Sons, Singapore.
  38. Kappos, A.J. (2002), Dynamic loading and design of structures, Spon Press, London and New York, USA.
  39. Kosior-Kazberuk, M. and Lelusz, M. (2007), "Strength development of concrete with fly ash addition", J. Civ. Eng. Manag., 13(2), 115-122. https://doi.org/10.3846/13923730.2007.9636427
  40. Kourehli, S.S., Ghadimi, S. and Ghadimi, R. (2018), "Crack identification in Timoshenko beam under moving mass using RELM", Steel. Compos. Struct., 28(3), 279-288. https://doi.org/10.12989/scs.2018.28.3.278.
  41. Lacki, P., Derlatka, A. and Kasza, P. (2018), "Comparison of steelconcrete composite column and steel column", Compos. Struct., 202, 82-88. https://doi.org/10.1016/j.compstruct.2017.11.055.
  42. Lee, H.-M., Lee, H-S., Min, S-h., Lim, S. and Singh, J.K. (2018), "Carbonation-induced corrosion initiation probability of rebars in concreto with/without finishing materials", Sustainability, 10(10), 3814. https://doi.org/10.3390/su10103814.
  43. Linul, E., Marsavina, L., Linul, P.A. and Kovacik, J. (2019), "Cryogenic and high temperature compressive properties of metal foam matrix composites", Compos. Struct., 209, 490-498. https://doi.org/10.1016/j.compstruct.2018.11.006.
  44. Linul, E., Movahedi, N. and Marsavina, L. (2017), "The temperature effect on the axial quasi-static compressive behavior of ex-situ aluminum foam-filled tubes", Compos. Struct., 180, 709-722. https://doi.org/10.1016/j.compstruct.2017.08.034.
  45. Lipinski, J. (1998), Fundamenty pod maszyny, Arkady, Warsaw.
  46. Marsavina, L., Berto, F., Negru, R., Serban, D.A. and Linul, E. (2017), "An engineering approach to predict mixed mode fracture of PUR foams based on ASED and micromechanical modelling", Theor. Appl. Fract. Mech. 91, 148-154. https://doi.org/10.1016/j.tafmec.2017.06.008.
  47. Marsavina, L., Constantinescu, D.M., Linul, E., Voiconi, T. and Apostol, D.A. (2015), "Shear and mode II fracture of PUR foams", Eng. Fail. Anal. 58, 465-476. https://doi.org/10.1016/j.engfailanal.2015.05.021.
  48. Mehta, P. (2013), "Analysis and design of machine foundation", Indn. J. Res., 3(5), 70-72.
  49. Meyer, Ch. (1998), Modelling and analysis of reinforced concrete structures for dynamic loading, Springer-verlag, Wien, New York, USA.
  50. Mirsayar, M.M., Berto, F., Aliha, M.R.M. and Park, P. (2016), "Strain-based criteria for mixed-mode fracture of polycrystalline graphite", Eng. Fract. Mech., 156, 114-123. https://doi.org/10.1016/j.engfracmech.2016.02.011.
  51. Nogueira, C.L. (2018), "A new method to test concrete tensile and shear strength with cylindrical specimens", ACI Mater. J., 115(6), 909-923. https://doi.org/10.14359/51706942.
  52. Owsiak, Z. and Grzmil, W. (2015), "The evaluation of the influence of mineral additives on the durability of selfcompacting concretes", KSCE J. Civ. Eng., 19(4), 1002-1008. https://doi.org/10.1007/s12205-013-0336-7.
  53. Prakash, S. and Puri, V.K. (2006), "Foundations for vibrating machines", J. Struct. Eng., April-May, 1-39.
  54. Prakash, S. and Puri, V.K. (1988), Foundations for machines: Analysis and Design (Series in Geotechnical Engineering), John Wiley and Sons, New York.
  55. Qing, L., Shi, X., Mu, R. and Cheng, Y. (2018), "Determining tensile strength of concrete based on experimental loads in fracture test", Eng. Fract. Mech., 202, 87-102. https://doi.org/10.1016/j.engfracmech.2018.09.017.
  56. Rafiee, R., Fakoor, M. and Hesamsadat, H. (2015), "The influence of production inconsistencies on the functional failure of GRP pipes", Steel. Compos. Struct., 19(6), 1369-1379. https://doi.org/10.12989/scs.2015.19.6.1369.
  57. Ren, J., Dang, F., Wang, H., Xue, Y. and Fang, J. (2018), "Enhancement mechanism of the dynamic strength of concrete based on the energy principle", Materials, 11(8), 1274. https://doi.org/10.3390/ma11081274.
  58. Sadowski, T. and Golewski, G.L. (2018), "A failure analysis of concrete composites incorporating fly ash during torsional loading", Compos. Struct., 183, 527-535. https://doi.org/10.1016/j.compstruct.2017.05.073.
  59. Savija, B. (2018), "Smart crack control in concrete through use of phase change materials (PCMs): A Review", Materials, 11(5), 654. https://doi.org/10.3390/ma11050654.
  60. Smarzewski, P. (2019), "Influence of basalt-polypropylene fibers on fracture properties of high performance concrete", Compos. Struct., 209, 23-33. https://doi.org/10.1016/j.compstruct.2018.10.070.
  61. Taheri-Behrooz, F., Aliha, M. R. M., Maroofi, M. and Hedizadeh, V. (2018), "Residual stresses measurement in the butt joint welded metals using FSW and TIG methods", Steel. Compos. Struct., 28(6), 759-766. https://doi.org/10.12989/scs.2018.28.6.759.
  62. Xiaoquan, C., Zhao, W., Liu, S., Xu, Y. and Bao, J. (2014), "Damage of scarf-repaired composite laminates subjected to low-velocity impacts", Steel. Compos. Struct., 17(2), 199-213. https://doi.org/10.12989/scs.2014.17.2.199.
  63. Xie, T. and Visintin, P. (2018), "A unified approach for mix design of concrete containing supplementary cementitious materials based on reactivity moduli", J. Clean. Prod., 203, 68-82. https://doi.org/10.1016/j.jclepro.2018.08.254.
  64. Yan, W.T., Han, B., Zhang, J.Q., Xie, H.B., Zhu, L. and Xue, Z.J. (2018), "Experimental study on creep behavior of fly ash concrete filled steel tube circular arches", Steel. Compos. Struct., 27(2), 185-192. https://doi.org/10.12989/scs.2018.27.2.185.
  65. Yuan, X., Li, R., Wang, J. and Yuan, W. (2016), "Dynamic numerical analysis of single-support modular bridge expansion joints", Steel. Compos. Struct., 22(1), 1-12. https://doi.org/10.12989/scs.2016.22.1.001.
  66. Zhang, P. and Li, Q. (2013), "Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume", Compos. Part B: Eng., 45, 1587-1594. https://doi.org/10.1016/j.compositesb.2012.10.006.
  67. Zhang, J., Fu, G.-Y., Yu, C.-J., Chen, B., Zhao, S.-X. and Li, S.-P. (2016), "Experimental behavior of circular flyash-concrete-filled steel tubular stub columns", Steel. Compos. Struct., 22(4), 821-835. https://doi.org/10.12989/scs.2016.22.4.821.
  68. Zhang, P., Ji-Xiang, G., Xiao-Bing, D., Tian-Hang, Z. and Juan, W. (2016), "Fracture behavior o fly ash concrete containing silica fume", Struct. Eng. Mech., 59(2), 261-275. https://doi.org/10.12989/sem.2016.59.2.261.

Cited by

  1. Analysis of the crack propagation rules and regional damage characteristics of rock specimens vol.24, pp.3, 2019, https://doi.org/10.12989/gae.2021.24.3.215
  2. Flexural behavior of partially prefabricated partially encased composite beams vol.38, pp.6, 2019, https://doi.org/10.12989/scs.2021.38.6.705
  3. A coupled experimental and numerical simulation of concrete joints' behaviors in tunnel support using concrete specimens vol.28, pp.2, 2021, https://doi.org/10.12989/cac.2021.28.2.189
  4. Designing and experimental study of compact vibration isolator with quasi-zero stiffness vol.79, pp.4, 2021, https://doi.org/10.12989/sem.2021.79.4.415
  5. Study on Reduction Effect of Vibration Propagation due to Internal Explosion Using Composite Materials vol.15, pp.1, 2021, https://doi.org/10.1186/s40069-021-00467-8