DOI QR코드

DOI QR Code

Pathogenic Diversity of Ascochyta rabiei Isolates and Identification of Resistance Sources in Core Collection of Chickpea Germplasm

  • Farahani, Somayeh (Department of Plant Protection, Varamin-Pishva Branch, Islamic Azad University) ;
  • Talebi, Reza (Department of Agronomy & Plant Breeding, College of Agriculture, Sanandaj Branch, Islamic Azad University) ;
  • Maleki, Mojdeh (Department of Plant Protection, Varamin-Pishva Branch, Islamic Azad University) ;
  • Mehrabi, Rahim (Department of Biotechnology, College of Agriculture, Isfahan University of Technology) ;
  • Kanouni, Homayoun (Kordestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO))
  • 투고 : 2018.12.23
  • 심사 : 2019.05.17
  • 발행 : 2019.08.01

초록

Ascochyta blight caused by Ascochyta rabiei (Pass.) Lab. (Telomorph: Didymella rabiei) (Kov.) is one of the most important fungal diseases in chickpea worldwide. Knowledge about pathogen aggressiveness and identification resistance sources to different pathotypes is very useful for proper decisions in breeding programs. In this study, virulence of 32 A. rabiei isolates from different part of Iran were analyzed on seven chickpea differentials and grouped into six races based on 0-9 rating scale and susceptibility/resistant pattern of chickpea differentials. The least and most frequent races were race V and race I, respectively. Race V and VI showed highly virulence on most of differential, while race I showed least aggressiveness. Resistance pattern of 165 chickpea genotypes also were tested against six different A. rabiei races. ANOVA analysis showed high significant difference for isolate, chickpea genotypes and their interactions. Overall $chickpea{\times}isolate$ (race) interactions, 259 resistance responses (disease severity ${\leq}4$) were identified. Resistance spectra of chickpea genotypes showed more resistance rate to race I (49.70%) and race III (35.15%), while there were no resistance genotypes to race VI. Cluster analysis based on disease severity rate, grouped chickpea genotypes into four distinct clusters. Interactions between isolates or races used in this study, showed the lack of a genotype with complete resistance. Our finding for virulence pattern of A. rabiei and newly identified resistance sources could be considerably important for integration of ascochyta blight resistance genes into chickpea breeding programs and proper decision in future for germplasm conservation and diseases management.

키워드

E1PPBG_2019_v35n4_321_f0001.png 이미지

Fig. 1. Principal component analysis (A) and UNJ-based cluster analysis (B) of 32 A. rabiei isolates tested on seven chickpea differentials for disease severity rating 0-9.

E1PPBG_2019_v35n4_321_f0002.png 이미지

Fig. 2. Cluster analysis of chickpea genotypes based on mean disease severity data against six Ascochyta rabiei races. Note that 165 chickpea genotypes grouped in four distinct clusters.

E1PPBG_2019_v35n4_321_f0003.png 이미지

Fig. 3. Principal component analysis (PCA) of 165 chickpea genotypes based on mean disease severity data against six Ascochyta rabiei races.

Table 1. Analysis of variance of the interaction between chickpea differential cultivars and Ascochyta rabiei isolates under greenhouse conditions

E1PPBG_2019_v35n4_321_t0001.png 이미지

Table 2. Disease reaction and pathogenicity test of 32 Ascochyta rabiei isolates of chickpea differentials

E1PPBG_2019_v35n4_321_t0002.png 이미지

Table 3. Analysis of variance of the interaction between 165 chickpea genotypes and six Ascochyta rabiei isolates under greenhouse conditions

E1PPBG_2019_v35n4_321_t0003.png 이미지

Table 4. Means of chickpea genotypes response to different Ascochyta rabiei races in four clusters

E1PPBG_2019_v35n4_321_t0004.png 이미지

참고문헌

  1. Aghamiri, A., Mehrabi, R. and Talebi, R. 2015. Genetic diversity of Pyrenophera tritici-repentis isolates, the causal agent of wheat tan spot disease from Northern Iran. Iran. J. Biotechnol. 13:39-44. https://doi.org/10.15171/ijb.1118
  2. Ahmad, S., Khan, M. A., Sahi, S. T. and Ahmad, R. 2014. Identification of resistant sources in chickpea against chickpea blight disease. Arch. Phytopathol. Plant Prot. 47:1885-1892. https://doi.org/10.1080/03235408.2013.861637
  3. Ali, H., Alam, S. S., Attanayake, R. N., Rahman, M. and Chen, W. 2012. Population structure and mating type distribution of the chickpea blight pathogen Ascochyta rabiei from Pakistan and the United States. J. Plant Pathol. 94:99-108.
  4. Ali, H., Alam, S. S. and Iqbal, N. 2013. Genetic and pathogenic variability of Ascochyta rabiei isolates from Pakistan and Syria as detected by universal rice primers. J. Plant. Pathol. Microbiol. 4:1000212.
  5. Atik, O., Baum, M., El-Ahmed, A., Ahmed, S., Abang, M. M., Yabrak, M. M., Murad, S., Kabbabeh, S. and Hamwieh, A. 2011. Chickpea ascochyta blight: Disease status and pathogen mating type distribution in Syria. J. Phytopathol. 159:443-449. https://doi.org/10.1111/j.1439-0434.2011.01788.x
  6. Baite, M. S. and Dubey, S. C. 2018. Pathogenic variability of Ascochyta rabiei causing blight of chickpea in India. Physiol. Mol. Plant Pathol. 102:122-127. https://doi.org/10.1016/j.pmpp.2018.01.001
  7. Ben Mohamed, L., Cherif, M., Harrabi, M., Galbraith, R. F. and Strange, R. N. 2010. Effects of sowing date onseverity of blight caused by Ascochyta rabiei and yield components of five chickpea cultivars grown under two climatic conditions in Tunisia. Eur. J. Plant Pathol. 126:293-303. https://doi.org/10.1007/s10658-009-9546-8
  8. Bhardwaj, R., Sandhu, J. S., Kaur, L., Gupta, S. K., Gaur, P. M. and Varshney, R. 2010. Genetics of ascochyta blight resistance in chickpea. Euphytica 171:337-343. https://doi.org/10.1007/s10681-009-0020-7
  9. Chen, W. and Muehlbauer, F. 2003. An improved technique for virulence assay of Ascochyta rabiei on chickpea. Int. Chickpea Pigeonpea Newslett. 10:31-33.
  10. Chen, W., Coyne, C. J., Peever, T. L. and Muehlbauer, F. J. 2004. Characterization of chickpea differentials for pathogenicity assay of ascochyta blight and identification of chickpea accessions resistant to Didymella rabiei. Plant Pathol. 53:759-769. https://doi.org/10.1111/j.1365-3059.2004.01103.x
  11. Chongo, G., Gossen, B. D., Buchwaldt, L., Adhikari, T. and Rimmer, S. R. 2004. Genetic diversity of Ascochyta rabiei in Canada. Plant Dis. 88:4-10. https://doi.org/10.1094/PDIS.2004.88.1.4
  12. Collard, B. C. Y., Pang, E. C. K., Ades, P. K. and Taylor, P. W. J. 2003. Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theor. Appl. Genet. 107:719-729. https://doi.org/10.1007/s00122-003-1297-x
  13. Dey, S. K. and Singh, G. 1993. Resistance to ascochyta blight in chickpea-Genetic basis. Euphytica 68:147-153. https://doi.org/10.1007/BF00024163
  14. Gan, Y. T., Siddique, K. H. M., MacLeod, W. J. and Jayakumar, P. 2006. Management options for minimizing the damage by ascochyta blight (Ascochyta rabiei) in chickpea (Cicer arietinum L.). Field Crops Res. 97:121-134. https://doi.org/10.1016/j.fcr.2005.10.002
  15. Ghaffari, P., Talebi, R. and Keshavarzi, F. 2014. Genetic diversity and geographical differentiation of Iranian landrace, cultivars, and exotic chickpea lines as revealed by morphological and microsatellite markers. Physiol. Mol. Biol. Plants 20:225-233. https://doi.org/10.1007/s12298-014-0223-9
  16. Hajibarat, Z., Saidi, A., Hajibarat, Z. and Talebi, R. 2015. Characterization of genetic diversity in chickpea using SSR markers, start codon targeted polymorphism (SCoT) and conserved DNA-derived polymorphism (CDDP). Physiol. Mol Biol. Plants 21:365-373. https://doi.org/10.1007/s12298-015-0306-2
  17. Ilyas, M. B., Chaudhry, M. A., Javed, N., Ghazanfar, M. U. and Khan, M. A. 2007. Sources of resistance in chickpea germplasm against Ascochyta blight. Pak. J. Bot. 39:1843-1847.
  18. Jamalabadi, J. G., Saidi, A., Karami, E., Kharkesh, M. and Talebi, R. 2013. Molecular mapping and characterization of genes governing time to flowering, seed weight, and plant height in an intraspecific genetic linkage map of chickpea (Cicer arietinum). Biochem. Genet. 51:387-397. https://doi.org/10.1007/s10528-013-9571-3
  19. Jan, H. and Wiese, M. V. 1991. Virulence forms of Ascochyta rabiei affecting chickpea in the Palouse. Plant Dis. 75:904-906. https://doi.org/10.1094/PD-75-0904
  20. Kanouni, H., Taleei, A. and Okhovat, M. 2011. Ascochyta blight (Ascochyta rabiei (Pass.) Lab.) of chickpea (Cicer arietinum L.): Breeding strategies for resistance. Int. J. Plant Breed. Genet. 5:1-22. https://doi.org/10.3923/ijpbg.2011.1.22
  21. Kimurto, P. K., Towett, B. K., Mulwa, R. S., Njogu, N., Jeptanui, L. J., Rao, G. N., Silim, S., Kaloki, P., Korir, P. and Macharia, J. K. 2013. Evaluation of chickpea genotypes for resistance to Ascochyta blight (Ascochyta rabiei) disease in the dry highlands of Kenya. Phytopathol. Mediterr. 52:212-221.
  22. Kumar, A., Mitter, N. and Agarwal, R. 2005. Characterization of pathotype diversity in nine isolates of Ascochyta rabiei based on virulence and DNA polymorphism. Ann. Plant Prot. Sci. 13:404-409.
  23. Labdi, M., Malhotra, R. S., Benzohra, I. E. and Imtiaz, M. 2013. Inheritance of resistance to Ascochyta rabiei in 15 chickpea germplasm accessions. Plant Breed. 132:197-199. https://doi.org/10.1111/pbr.12038
  24. Malik, S. R., Iqbal, S. M., Iqbal, U., Ahmad, I. and Haqqani, A. M. 2005. Response of chickpea lines to Ascochyta rabiei at two growing stage. Caspian J. Environ. Sci. 3:173-177.
  25. Mehrabi, R., Makhdoomi, A. and Jafar-Aghaie, M. 2015. Identification of new sources of resistance to septoria tritici blotch caused by Zymoseptoria tritici. J. Phytopathol. 163:84-90. https://doi.org/10.1111/jph.12282
  26. Nene, Y. L., Haware, M. P. and Reddy, M. V. 1981. Chickpea diseases:Resistance-screening techniques. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India. 11 pp.
  27. Nguyen, T. T., Taylor, P. W. J., Redden, R. J. and Ford, R. 2005. Resistance to Ascochyta rabiei (Pass.) Lab. in a wild Cicer germplasm collection. Aust. J. Exp. Agric. 45:1291-1296. https://doi.org/10.1071/EA04031
  28. Pande, S., Siddique, K. H. M., Kishore, G. K., Baaya, B., Gaur, P. M., Gowda, C. L. L., Bretag, T. W. and Crouch, J. H. 2005. Ascochyta blight of chickpea (Cicer arietinum L.): A review of biology, pathogen city, and disease management. Aust. J. Agric. Res. 56:317-332. https://doi.org/10.1071/AR04143
  29. Pande, S., Sharma, M., Gaur, P. M., Tripathi, S., Kaur, L., Basandrai, A., Khan, T., Gowda, C. L. L. and Siddique, K. H. M. 2011. Development of screening techniques and identification of new sources of resistance to Ascochyta blight disease of chickpea. Aust. Plant Pathol. 40:149-156. https://doi.org/10.1007/s13313-010-0024-8
  30. Peever, T. L., Chen, W., Abdo, Z. and Kaiser, W. J. 2012. Genetics of virulence in Ascochyta rabiei. Plant Pathol. 61:754-760. https://doi.org/10.1111/j.1365-3059.2011.02566.x
  31. Reddy, M. V. and Kabbabeh, S. 1985. Pathogenic variability in Ascochyta rabiei (Pass.) Lab. in Syria and Lebanon. Phytopathol. Mediterr. 24:265-266.
  32. Reddy, M. V., Singh, K. B. and Malhotra, R. S. 1992. Multilocation evaluation of chickpea germplasm and breeding lines for resistance to Ascochyta blight. Phytopathol. Mediterr. 31:59-66.
  33. Rhaiem, A., Cherif, M., Peever, T. L. and Dyer, P. S. 2008. Population structure and mating system of Ascochyta rabiei in Tunisia: evidence for the recent introduction of mating type 2. Plant Pathol. 57:540-551. https://doi.org/10.1111/j.1365-3059.2007.01779.x
  34. Shahriari, D., Torabi, M. and Kangarloo, S. 2016. Response of some chickpea genotypes to races of Ascochyta rabiei cause of ascochyta blight in greenhouse. Seed Plant Improv. J. 32:479-492.
  35. Sharma, M. and Ghosh, R. 2016. An update on genetic resistance of chickpea to ascochyta blight. Agronomy 6:18. https://doi.org/10.3390/agronomy6010018
  36. Shokouhifar, F., Bagheri, A., Falahati, R. M. and Malekzadeh, S. 2003. Pathotyping of Ascochyta rabiei isolates in Iran. J. Agric. Sci. Nat. Resour. 10:217-232.
  37. Singh, K. B. and Reddy, M. V. 1983. Inheritance of resistance to Ascochyta blight in chickpea. Crop Sci. 23:9-10. https://doi.org/10.2135/cropsci1983.0011183X002300010003x
  38. Singh, K. B. and Reddy, M. V. 1989. Genetics of resistance to Ascochyta blight in four chickpea lines. Crop Sci. 29:657-659. https://doi.org/10.2135/cropsci1989.0011183X002900030022x
  39. Singh, K. B. and Reddy, M. V. 1990. Patterns and susceptibility to races of Ascochyta rabiei among germplasm accessions and breeding lines of chickpea. Plant Dis. 74:127-129. https://doi.org/10.1094/PD-74-0127
  40. Singh, K. B. and Reddy, M. V. 1991. Advances in disease-resistance breeding in chickpea. Adv. Agron. 45:191-222. https://doi.org/10.1016/S0065-2113(08)60041-3
  41. Talebi, R., Naji, A. M. and Fayaz, F. 2008. Geographical patterns of genetic diversity in cultivated chickpea (Cicer arietinum L.) characterized by amplified fragment length polymorphism. Plant Soil Environ. 54:447-452. https://doi.org/10.17221/399-PSE
  42. Turkkan, M. and Dolar, F. S. 2009. Determination of pathogenic variability of Didymella rabiei, the agent of ascochyta blight of chickpea in Turkey. Turk. J. Agric. For. 33:585-591.
  43. Vafaei, S. H., Rezaee, S., Moghadam, A. A. and Zamanizadeh, H. R. 2015. Virulence diversity of Ascochyta rabiei the causal agent of Ascochyta blight of chickpea in the western provinces of Iran. Arch. Phytopathol. Plant Prot. 48:921-930. https://doi.org/10.1080/03235408.2016.1143600
  44. Vail, S. and Banniza, S. 2008. Structure and pathogenic variability in Ascochyta rabiei populations on chickpea in the Canadian prairies. Plant Pathol. 57:665-673. https://doi.org/10.1111/j.1365-3059.2008.01837.x
  45. van der Maesen, L. J. G. 1987. Origin, history, and taxonomy of chickpea. In: The chickpea, eds. by M. C. Saxena and K. B. Singh, pp. 11-34. CABI, Wallinford, UK.
  46. Younessi, H., Okhovat, S. M., Hejaroud, G. A., Zad, S. J., Taleei, A. R. and Zamani, M. R. 2004. Virulence variability of Ascochyta rabiei isolates on chickpea cultivars in Kermanshah province. Iran J. Plant. Pathol. 39:213-228.