DOI QR코드

DOI QR Code

Analysis of the Engagement Effects of DIRCM against a Man Portable Air Defense System

휴대용대공유도탄에 대응하는 지향성적외선방해장비의 교전효과 분석

  • Received : 2019.02.01
  • Accepted : 2019.06.28
  • Published : 2019.06.30

Abstract

A MANPADS(Man Portable Air Defense System), which tracks infrared energy, is light enough for individuals to carry and can against to a variety of aircraft, making it widely deployed around the world, posing a major threat to aircraft. A flare has been developed as an IRCM(Infrared Countermeasures) that protects the life of friendly aircraft and combatants by deceiving such guided missiles. However, DIRCM, which can overcome the problems of existing IRCM, is being developed mainly in some developed countries, and the need for it has been increasing gradually. This paper modeled first generation IR seeker of AM modulation method, the second generation IR seeker of FM modulation method, and the third generation IR seeker of pulse modulation method among various MANPADS, and modeled the scattering light phenomenon in the seeker when laser beams are investigated in DIRCM. Using this, jamming simulations were performed in various engagement environments of the MANPADS and aircraft equipped with DIRCM, and the miss distance of the guided missiles and aircraft were analyzed. Simulation results show that DIRCM, which irradiates a modulated laser beam with one jamming code, deceives both first, second and third generation MANPADS at 1km and 2km of engagement distance. In particular, the survival rate of aircraft equipped with DIRCM increased when the distance of engagement increased from 1km to 2km, and the survival rate was at least 99% at 2km of engagement distance.

적외선 에너지를 추적하는 휴대용대공유도탄(MANPADS: Man Portable Air Defense System)은 개인이 휴대할 수 있을 정도로 가벼우며 다양한 항공기에 대응할 수 있어, 전 세계적으로 널리 배치되어 항공기의 큰 위협이 되고 있다. 이러한 유도탄을 기만하여 아군 항공기와 전투원의 생명을 보호하는 적외선대응책(IRCM: Infrared Countermeasure)으로 섬광탄이 개발되었다. 그러나 기존 적외선대응책의 문제점을 보완할 수 있는 지향성적외선방해장비(DIRCM: Directional Infrared Countermeasure)가 최근 일부 선진국을 중심으로 개발되고 있으며, 그 필요성이 점차 증가하고 있다. 본 논문에서는 다양한 MANPADS 중 AM 변조 방식의 1세대 적외선탐색기, FM 변조 방식의 2세대 적외선탐색기, 펄스변조 방식의 3세대 적외선탐색기와 DIRCM에서 레이저빔이 조사될 때 탐색기에서 발생하는 산란광 현상을 모델링하였다. 이를 이용하여 MANPADS와 DIRCM을 장착한 항공기의 다양한 교전환경에서 기만 시뮬레이션을 수행하였고, 유도탄과 항공기의 최소거리인 Miss Distance를 분석하였다. 시뮬레이션 결과, 하나의 기만코드로 변조된 레이저빔을 조사하는 DIRCM이 교전거리 1km와 2km에서 1, 2, 3세대 MANPADS를 모두 기만하는 것을 시뮬레이션을 통하여 확인하였다. 특히 교전거리가 1km에서 2km로 늘어날 때 DIRCM을 장착한 항공기의 생존율도 증가하였고, 교전거리 2km에서는 생존율이 최소 99% 이상으로 분석되었다.

Keywords

SMROBX_2019_v28n2_139_f0001.png 이미지

Fig. 1. Optics of spin-scan a IR(Infrared) seeker

SMROBX_2019_v28n2_139_f0002.png 이미지

Fig. 2. Reticle and detector signal of a spin-scan IR seeker(Pollock et al., 1993)

SMROBX_2019_v28n2_139_f0003.png 이미지

Fig. 3. Tracking signal processor modeling of a spin-scan IR seeker

SMROBX_2019_v28n2_139_f0004.png 이미지

Fig. 4. Optics of a con-scan IR seeker

SMROBX_2019_v28n2_139_f0005.png 이미지

Fig. 5. Reticle and detector signal of a con-scan IR seeker(Pollock et al., 1993)

SMROBX_2019_v28n2_139_f0006.png 이미지

Fig. 6. Tracking signal processor modeling of a con-scan IR seeker

SMROBX_2019_v28n2_139_f0007.png 이미지

Fig. 7. Figure of optics(left) and reticle(right) of a pulse modulated IR seeker

SMROBX_2019_v28n2_139_f0008.png 이미지

Fig. 8. Schematic of a target on the rotating reticle

SMROBX_2019_v28n2_139_f0009.png 이미지

Fig. 9. Tracking signal processor modeling of a pulse modulated IR seeker

SMROBX_2019_v28n2_139_f0010.png 이미지

Fig. 10. Coordinate system used in the simulation

SMROBX_2019_v28n2_139_f0011.png 이미지

Fig. 11. Block diagram of the engagement simulation

SMROBX_2019_v28n2_139_f0012.png 이미지

Fig. 12. Scenario of the engagement simulation

SMROBX_2019_v28n2_139_f0013.png 이미지

Fig. 13. Miss distance of 1st MANPADS at 1km

SMROBX_2019_v28n2_139_f0014.png 이미지

Fig 14. Miss distance of 1st MANPADS at 2km

SMROBX_2019_v28n2_139_f0015.png 이미지

Fig. 15. Miss distance of 2nd MANPADS at 1km

SMROBX_2019_v28n2_139_f0016.png 이미지

Fig 16. Miss distance of 2nd MANPADS at 2km

SMROBX_2019_v28n2_139_f0017.png 이미지

Fig 17. Miss distance of 3rd MANPADS at 1km

SMROBX_2019_v28n2_139_f0018.png 이미지

Fig 18. Miss distance of 3rd MANPADS at 2km

Table 1. Miss distance of 1st MANPADS at 1km

SMROBX_2019_v28n2_139_t0001.png 이미지

Table 2. Miss distance of 1st MANPADS at 2km

SMROBX_2019_v28n2_139_t0002.png 이미지

Table 3. Miss distance of 2nd MANPADS at 1km

SMROBX_2019_v28n2_139_t0003.png 이미지

Table 4. Miss distance of 2nd MANPADS at 2km

SMROBX_2019_v28n2_139_t0004.png 이미지

Table 5. Miss distance of 3rd MANPADS at 1km

SMROBX_2019_v28n2_139_t0005.png 이미지

Table 6. Miss distance of 3rd MANPADS at 2km

SMROBX_2019_v28n2_139_t0006.png 이미지

References

  1. Ahn S.H., Y.C. Kim, K.S. Lee, K.H. Kim and S. S. Kim (2009) "DIRCM Jamming Effect Analysis of Spin-Scan Reticle Seeker", Journal of the Korea Institute of Military Science and Technology, 12(6), 776-784
  2. Ahn S.H., Y.C. Kim, K.S. Lee, K.H. Kim and S. S. Kim (2010) "IRCM Jamming Effect Analysis of a Stationary Reticle Seeker", Journal of the Korea Institute of Military Science and Technology, 13(2), 304-312.
  3. Chapman S. (2014) "The next generation in aircraft protection against advanced MANPADS," Proc. SPIE 9251, Technologies for Optical Countermeasures XI.
  4. Jeong C.S., Y.S. Shin, W.J. Choi, D.Y. Jung and K.H. Kim (2016) "Jamming Simulation of a Pulse Modulated Infrared Seeker", 2016 Journal of the Korea Institute of Military Science and Technology Annual Conference Proceedings, 463-464.
  5. Jeong C.S., Y.S. Shin and S.J. Kim (2018) "Jamming Simulation for an Analysis of DIRCM Effectiveness", 11th Intenational Army Modeling & Simulation Education Conference, 94-95.
  6. Pollock D.H., J.S. Accetta and D.L. Shumaker (1993) Countermeasure Systems, The Infrared & Electro-Optical Systems Handbook, Vol. 7, The Society of Photo-Optical Instrumentation Engineers.
  7. Richardson M.A. (2007) "The anatomy of the MANPAD," Proc. SPIE 6738, Technologies for Optical Countermeasures IV.
  8. Smith C.R., R. Grasso, J. Pledger and N. Murarka (2012) "Trends in electro-optical electronic warfares," Proc. SPIE 8543, Technologies for Optical Cointermeasures IX.
  9. Titterton D.H. (2004) "A review of the development of optical countermeasures," Proc. SPIE 5615, Technology for Optical Countermeasures.
  10. White J.R. (2012) "Aircraft Infrared Principles, Signatures, Threats, and Countermeasures," Naval Air Warfare Center Weapons Division TP 8773.
  11. Yasin S.A., A.R. Erfanian, M.R. Mosavi and A. Mohammadi (2014) "Design and simulation a new unique-slit reticle for pulsed infrared seekers," Journal of the Optical Society of Korea, 18(1), 1-8. https://doi.org/10.3807/JOSK.2014.18.1.001