DOI QR코드

DOI QR Code

Expression of Morphogenic Protein Genes in Juvenile Red Spotted Grouper (Epinephelus akaara) with Deformity

붉바리(Epinephelus akaara) 기형 발생 치어의 형태형성 유전자 발현

  • You, Jin Ho (Department of Aquatic Life Medical Sciences, Sunmoon University) ;
  • Mun, Seong Hee (Department of Aquatic Life Medical Sciences, Sunmoon University) ;
  • Oh, Hyeon Ji (Department of Aquatic Life Medical Sciences, Sunmoon University) ;
  • Baek, Hea Ja (Department of Marine Biology, Pukyoung National University) ;
  • Lee, Young-Don (Marine Science Institute, Jeju National University) ;
  • Lee, Chi Hoon (CR Co, Ltd.) ;
  • Kwon, Joon Yeong (Department of Aquatic Life Medical Sciences, Sunmoon University)
  • 유진호 (선문대학교 수산생명의학과) ;
  • 문성희 (선문대학교 수산생명의학과) ;
  • 오현지 (선문대학교 수산생명의학과) ;
  • 백혜자 (부경대학교 자원생물학과) ;
  • 이영돈 (제주대학교 해양과학연구소) ;
  • 이치훈 (주식회사 씨알) ;
  • 권준영 (선문대학교 수산생명의학과)
  • Received : 2019.05.29
  • Accepted : 2019.06.10
  • Published : 2019.06.17

Abstract

The deformity occurring at the early developmental stage of red spotted grouper (Epinephelus akaara) causes detrimental effects on the process of juvenile production. In this study, we have compared the expressions of several key genes (insulin like growth factor 1: IGF-1, bone morphogenic protein 4: BMP4, peroxisome proliferator-activated receptors γ: PPARγ, matrix Gla protein: MGP) for morphogenesis between normal and 2 types (cephalic and jaw) of deformed juvenile fish. Expression of these genes were investigated in the brain, liver and muscle of each group of fish (n=20) by real-time PCR. Expression of IGF-1 and BMP4 mRNA in the brain and liver showed significant difference between normal and deformed fish (p<0.05). However, no difference was observed in the expression of PPARγ and MGP mRNA between normal and deformed fish in any tissues. It seems certain that IGF-1 and BMP4 are associated with the state of deformity in juvenile red spotted grouper.

붉바리(Epinephelus akaara) 종자생산 시 기형 발생에 의한 손실이 크지만 기형어에 대한 생물학적 정보는 많지 않다. 본 연구에서는 부화 후 96일 붉바리 치어를 정상 그룹과 두 유형의 기형 그룹(머리, 턱)으로 나누어 형태형성과 연관된 4개의 주요 유전자(insulin like growth factor 1: IGF-1, bone morphogenic protein 4: BMP4, peroxisome proliferator-activated receptors γ: PPARγ, matrix Gla protein: MGP) 발현을 조사하였다. 각 그룹에서 뇌, 간 및 근육을 잘라낸 다음 total RNA를 추출한 후 real-time PCR을 사용하여 유전자 발현 차이를 비교하였다(n=20). 부화 후 96일 붉바리 치어에서 IGF-1과 BMP4 유전자는 기형 그룹의 뇌와 간에서 정상 그룹과 비교하여 유의한 발현 차이를 나타냈다(p<0.05). 반면에 PPARγ와 MGP 유전자는 어떤 조직에서도 정상 그룹과 기형 그룹 사이에 유의한 발현 차이를 보이지 않았다. IGF-1과 BMP4 유전자는 치어 단계의 붉바리 기형 상태와 관련되어 있는 것으로 보인다.

Keywords

Acknowledgement

본 연구는 농림수산식품부 농림기술개발사업(과제번호: 213008-05-3-WT511, 사육환경 요소에 따른 치어의 적응 생리 특성 조사)의 지원에 의해 수행되었습니다.

References

  1. Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ. 2004. Bmp4 and morphological variation of beaks in Darwin's finches. Science 305: 1462-1465. https://doi.org/10.1126/science.1098095
  2. Albertson RC, Streelman JT, Kocher TD, Yelick PC. 2005. Integration and evolution of the cichlid mandible: The molecular basis of alternate feeding strategies. PNAS 102: 16287-16292. https://doi.org/10.1073/pnas.0506649102
  3. Boglione C, Gavaia P, Koumoundouros G, Gisbert E, Moren M, Fontagne S, Witten PE. 2013. Skeletal anomalies in reared European fish larvae and juveniles. Part 1: normal and anomalous skeletogenic processes. Reviews in Aquaculture 5: S99-S120. https://doi.org/10.1111/raq.12015
  4. Cornish A. 2018. Epinephelus akaara. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2003.RLTS.T43974A10846282.en
  5. Darias MJ. 2011a. Overview of vitamin D and C requirements in fish and their influence on the skeletal system. Aquaculture 315: 49-60. https://doi.org/10.1016/j.aquaculture.2010.12.030
  6. Darias MJ. 2011b. Imbalanced dietary ascorbic acid alters molecular pathways involved in skeletogenesis of developing European sea bass (Dicentrarchus labrax). Comp Biochem Physiol, Part A 159: 46-55. https://doi.org/10.1016/j.cbpa.2011.01.013
  7. Hogan BLM. 1996. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10: 1580-1594. https://doi.org/10.1101/gad.10.13.1580
  8. Kim JE, Kim HB, Lee YD, Baek HJ. 2017. Correlation of developmental deformity with calcium, phosphorus, or estradiol-17β levels in reared red spotted grouper, Epinephelus akaara juveniles. Dev Reprod 21: 391-397. https://doi.org/10.12717/DR.2017.21.4.391
  9. Koumoundouros G. 2010. Morpho-anatomical abnormalities in Mediterranean marine aquaculture. In: Koumoundouros G (ed.), Recent Advances in Aquaculture Research. Transworld Research Network, Kerala, India, pp 125-148.
  10. Lall SP, Lewis-McCrea LM. 2007. Role of nutrients in skeletal metabolism and pathology in fish - An overview. Aquaculture 267: 3-19. https://doi.org/10.1016/j.aquaculture.2007.02.053
  11. Lee BI, Kim SK, Kwon ON, Park HG, Park JC. 2013. The optimal salinity and temperature condition for the growth of rotifer, Keratella sp. KSFME 25: 1205-1213.
  12. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G. 1997. Spontaneous calcification of arteries and cartilage in mice lacking matrix Gla protein. Nature 385: 78-81. https://doi.org/10.1038/385078a0
  13. Ma Z, Hu J, Yu G, Qin JG. 2018. Gene expression of bone morphogenetic proteins and jaw malformation in golden pompano Trachinotus ovatus larvae in different feeding regimes. J Appl Anim Res 46: 164-177. https://doi.org/10.1080/09712119.2017.1282371
  14. Moriyama S, Ayson FG, Kawauchi H. 2000. Growth regulation by insulin-like Growth factor-1 in fish. Biosci Biotechnol Biochem 64: 1553-1562. https://doi.org/10.1271/bbb.64.1553
  15. Park JY, Han KH, Cho JK, Myeong, JI, Park JM. 2016. Early osteological development of larvae and juveniles in red spotted grouper, Epinephelus akaara. Dev Reprod 20: 87-101. https://doi.org/10.12717/DR.2016.20.2.087
  16. Shin CS, Cho HY. 2005. Bone remodeling and Mineralization. Endocrinology and Metabolism 20: 543-555.
  17. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. 1994. mPPARγ2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8: 1224-1234. https://doi.org/10.1101/gad.8.10.1224
  18. Viegas CSB, Simes DC, Williamson MK, Cavaco S, Laize V, Price PA, Cancela ML. 2013. Sturgeon osteocalcin shares structural features with matrix Gla protein: evolutionary relationship and functional implications. J Biol Chem 288: 27801-27811. https://doi.org/10.1074/jbc.M113.450213
  19. Villeneuve LAN, Gisbert E, Moriceau J, Cahu CL, Zambonino Infante JL. 2006. Intake of high levels of vitamin A and polyunsaturated fatty acids during different developmental periods modifies the expression of morphogenesis genes in European sea bass (Dicentrarchus labrax). Br J Nutr 95: 677-687. https://doi.org/10.1079/BJN20051668
  20. Wan Y. 2010. PPARγ in bone homeostasis. Trends Endocrinol Metab 21: 722-728. https://doi.org/10.1016/j.tem.2010.08.006
  21. Yildirim S, Coban D, Suzer C, Firat K, Saka S. 2014. Skeletal deformities of cultured sharpsnout seabream (Diplodus puntazzo) larvae during early life development. Ankara univ Vet Fak Derg 61: 267-273.
  22. Zambonino-Infante JL, Cahu CL. 2010. Effect of nutrition on marine fish development and quality. In: Koumoundouros G (ed.), Recent Avances in Aquaculture Research. Transworld Research Network, Kerala, India, pp 103-124.