DOI QR코드

DOI QR Code

Hybrid Nanofiber Scaffold-Based Direct Conversion of Neural Precursor Cells/Dopamine Neurons

  • Lim, Mi-Sun (Research and Development Center, Jeil Pharmaceutical Company) ;
  • Ko, Seung Hwan (Graduate School of Biomedical Science & Engineering, Hanyang University) ;
  • Kim, Min Sung (School of Mechanical & Aerospace Engineering, Seoul National University) ;
  • Lee, Byungjun (School of Mechanical & Aerospace Engineering, Seoul National University) ;
  • Jung, Ho-Sup (Center for Food and Bioconvergence, Department of Food Science and Biotechnology, Seoul National University) ;
  • Kim, Keesung (Research Institute of Advanced Materials, Seoul National University) ;
  • Park, Chang-Hwan (Graduate School of Biomedical Science & Engineering, Hanyang University)
  • Received : 2018.11.29
  • Accepted : 2019.03.10
  • Published : 2019.07.31

Abstract

The concept of cellular reprogramming was developed to generate induced neural precursor cells (iNPCs)/dopaminergic (iDA) neurons using diverse approaches. Here, we investigated the effects of various nanoscale scaffolds (fiber, dot, and line) on iNPC/iDA differentiation by direct reprogramming. The generation and maturation of iDA neurons (microtubule-associated protein 2-positive and tyrosine hydroxylase-positive) and iNPCs (NESTIN-positive and SOX2-positive) increased on fiber and dot scaffolds as compared to that of the flat (control) scaffold. This study demonstrates that nanotopographical environments are suitable for direct differentiation methods and may improve the differentiation efficiency.

Keywords

Acknowledgement

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI16C1013 to Keesung Kim and Chang-Hwan Park) and Basic Science Research Program (NRF2016R1D1A1B03931915 to Mi-Sun Lim).

References

  1. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010;463:1035-1041 https://doi.org/10.1038/nature08797
  2. Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 2011;108:7838-7843 https://doi.org/10.1073/pnas.1103113108
  3. Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P, Nothen MM, Brustle O, Edenhofer F. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 2012;10:473-479 https://doi.org/10.1016/j.stem.2012.03.003
  4. Lim MS, Chang MY, Kim SM, Yi SH, Suh-Kim H, Jung SJ, Kim MJ, Kim JH, Lee YS, Lee SY, Kim DW, Lee SH, Park CH. Generation of dopamine neurons from rodent fibroblasts through the expandable neural precursor cell stage. J Biol Chem 2015;290:17401-17414 https://doi.org/10.1074/jbc.M114.629808
  5. Lim MS, Lee SY, Park CH. FGF8 is essential for functionality of induced neural precursor cell-derived dopaminergic neurons. Int J Stem Cells 2015;8:228-234 https://doi.org/10.15283/ijsc.2015.8.2.228
  6. Kim SM, Kim JW, Kwak TH, Park SW, Kim KP, Park H, Lim KT, Kang K, Kim J, Yang JH, Han H, Lee I, Hyun JK, Bae YM, Scholer HR, Lee HT, Han DW. Generation of integration-free induced neural stem cells from mouse fibroblasts. J Biol Chem 2016;291:14199-14212 https://doi.org/10.1074/jbc.M115.713578
  7. Kim J, Kim KP, Lim KT, Lee SC, Yoon J, Song G, Hwang SI, Scholer HR, Cantz T, Han DW. Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts. Sci Rep 2015;5:15706 https://doi.org/10.1038/srep15706
  8. Li X, Zuo X, Jing J, Ma Y, Wang J, Liu D, Zhu J, Du X, Xiong L, Du Y, Xu J, Xiao X, Wang J, Chai Z, Zhao Y, Deng H. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 2015;17:195-203 https://doi.org/10.1016/j.stem.2015.06.003
  9. Zheng J, Choi KA, Kang PJ, Hyeon S, Kwon S, Moon JH, Hwang I, Kim YI, Kim YS, Yoon BS, Park G, Lee J, Hong S, You S. A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells. Biochem Biophys Res Commun 2016;476:42-48 https://doi.org/10.1016/j.bbrc.2016.05.080
  10. Lim MS, Kim SM, Lee EH, Park CH. Efficient induction of neural precursor cells from fibroblasts using stromal cell-derived inducing activity. Tissue Eng Regen Med 2016;13:554-559 https://doi.org/10.1007/s13770-016-0012-3
  11. Yim EK, Darling EM, Kulangara K, Guilak F, Leong KW. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 2010;31:1299-1306 https://doi.org/10.1016/j.biomaterials.2009.10.037
  12. McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, Murawski K, Kingham E, Oreffo RO, Dalby MJ. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater 2011;10:637-644 https://doi.org/10.1038/nmat3058
  13. Kulangara K, Adler AF, Wang H, Chellappan M, Hammett E, Yasuda R, Leong KW. The effect of substrate topography on direct reprogramming of fibroblasts to induced neurons. Biomaterials 2014;35:5327-5336 https://doi.org/10.1016/j.biomaterials.2014.03.034
  14. Yoo J, Noh M, Kim H, Jeon NL, Kim BS, Kim J. Nano-grooved substrate promotes direct lineage reprogramming of fibroblasts to functional induced dopaminergic neurons. Biomaterials 2015;45:36-45 https://doi.org/10.1016/j.biomaterials.2014.12.049
  15. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 2005;310: 1139-1143 https://doi.org/10.1126/science.1116995
  16. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126: 677-689 https://doi.org/10.1016/j.cell.2006.06.044
  17. Anderson JM, Kushwaha M, Tambralli A, Bellis SL, Camata RP, Jun HW. Osteogenic differentiation of human mesenchymal stem cells directed by extracellular matrix-mimicking ligands in a biomimetic self-assembled peptide amphiphile nanomatrix. Biomacromolecules 2009;10: 2935-2944 https://doi.org/10.1021/bm9007452
  18. Kurpinski K, Chu J, Hashi C, Li S. Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci U S A 2006;103:16095-16100 https://doi.org/10.1073/pnas.0604182103
  19. O'Cearbhaill ED, Punchard MA, Murphy M, Barry FP, McHugh PE, Barron V. Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials 2008; 29:1610-1619 https://doi.org/10.1016/j.biomaterials.2007.11.042
  20. Ruiz SA, Chen CS. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 2008;26:2921-2927 https://doi.org/10.1634/stemcells.2008-0432
  21. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 2004;6:483-495 https://doi.org/10.1016/S1534-5807(04)00075-9
  22. Park J, Cho CH, Parashurama N, Li Y, Berthiaume F, Toner M, Tilles AW, Yarmush ML. Microfabrication-based modulation of embryonic stem cell differentiation. Lab Chip 2007;7:1018-1028 https://doi.org/10.1039/b704739h
  23. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 2007;6:997-1003 https://doi.org/10.1038/nmat2013
  24. Oh S, Brammer KS, Li YS, Teng D, Engler AJ, Chien S, Jin S. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A 2009;106:2130-2135 https://doi.org/10.1073/pnas.0813200106
  25. Lee MR, Kwon KW, Jung H, Kim HN, Suh KY, Kim K, Kim KS. Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials 2010;31:4360-4366 https://doi.org/10.1016/j.biomaterials.2010.02.012
  26. Kim HN, Kang DH, Kim MS, Jiao A, Kim DH, Suh KY. Patterning methods for polymers in cell and tissue engineering. Ann Biomed Eng 2012;40:1339-1355 https://doi.org/10.1007/s10439-012-0510-y
  27. Li H, Wen F, Chen H, Pal M, Lai Y, Zhao AZ, Tan LP. Micropatterning extracellular matrix proteins on electrospun fibrous substrate promote human mesenchymal stem cell differentiation toward neurogenic lineage. ACS Appl Mater Interfaces 2016;8:563-573 https://doi.org/10.1021/acsami.5b09588
  28. You MH, Kwak MK, Kim DH, Kim K, Levchenko A, Kim DY, Suh KY. Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media. Biomacromolecules 2010;11:1856-1862 https://doi.org/10.1021/bm100374n
  29. Roberts JN, Sahoo JK, McNamara LE, Burgess KV, Yang J, Alakpa EV, Anderson HJ, Hay J, Turner LA, Yarwood SJ, Zelzer M, Oreffo RO, Ulijn RV, Dalby MJ. Dynamic surfaces for the study of mesenchymal stem cell growth through adhesion regulation. ACS Nano 2016;10:6667-6679 https://doi.org/10.1021/acsnano.6b01765
  30. Ventre M, Netti PA. Engineering cell instructive materials to control cell fate and functions through material cues and surface patterning. ACS Appl Mater Interfaces 2016;8:14896-14908 https://doi.org/10.1021/acsami.5b08658