DOI QR코드

DOI QR Code

수치해석을 이용한 압축 분산형 앵커의 내하체 최적 간격 산정

Evaluation of Optimum Spacing between Anchor Bodies of Distributive Compression Anchor Using Numerical Simulation

  • 구교영 (서울대학교 건설환경공학부) ;
  • 신규범 (서울대학교 건설환경공학부) ;
  • 정충기 (서울대학교 건설환경공학부) ;
  • 김성렬 (서울대학교 건설환경공학부)
  • Gu, Kyo-Young (Dept. of Civil and Environmental Eng., Seoul National Univ.) ;
  • Shin, Gyu-Bum (Dept. of Civil and Environmental Eng., Seoul National Univ.) ;
  • Chung, Choong-Ki (Dept. of Civil and Environmental Eng., Seoul National Univ.) ;
  • Kim, Sung-Ryul (Dept. of Civil and Environmental Eng., Seoul National Univ.)
  • 투고 : 2019.05.20
  • 심사 : 2019.06.26
  • 발행 : 2019.07.31

초록

압축 분산형 앵커는 여러 개의 내하체를 이용하여 그라우트에 발생하는 압축응력을 분산시키고 앵커 인장력을 증가시키는 앵커이다. 압축 분산형 앵커의 경우 내하체 사이의 간격이 그라우트 응력에 큰 영향을 미친다. 그러나, 현재까지 내하체 간격에 대한 연구가 매우 부족하며 설계기준 또한 제시되어 있지 않은 실정이다. 그러므로, 본 연구에서는 유한요소 수치해석을 수행하여 내하체 간격이 그라우트 응력분포에 미치는 영향을 분석하였다. 우선, 압축형 앵커에 대해 수행된 현장 재하시험 결과와 비교하여 수치모델링의 적용성을 검증하였다. 그리고, 지반조건, 내하체 간격, 하중크기 등을 변화시키는 변수 연구를 수행하였다. 해석결과, 내하체 간격이 좁아지면 그라우트 최대 압축응력이 증가하며, 내하체 간격이 넓어지면 그라우트에 인장응력이 발생하였다. 그러므로, 그라우트 내 압축응력의 중첩과 인장응력 발생을 최소화하는 내하체 간격을 최적간격으로 정의하고, 지반조건과 하중크기에 따른 최적간격을 제시하였다.

Load distributive compression anchors distribute the compressive stress in the grout and increase the pull-out capacity of the anchor by using multiple anchor bodies. In this anchor type, the spacing between the anchor bodies has a large influence on the stress in the grout. However, there are few researches about the spacing and there are no design standards. Therefore, the effect of the anchor body spacing on the grout stress was analyzed by performing finite element analyses. First, the applicability of the numerical modeling was verified by comparing with field test results of a compression anchor. Then, the parametric study was performed varying soil type, anchor body spacing, and load magnitude. The analysis results showed that the maximum compressive stress in the grout increased at the narrower spacing and the tensile stress developed at the wider spacing. Therefore, the optimum spacing was defined as the spacing, which prevents the superposition of compressive stresses and minimize the tensile stress. Finally, the optimum spacing was proposed according to the soil type and the load magnitude.

키워드

GJBGC4_2019_v35n7_29_f0001.png 이미지

Fig. 1. Stress distribution in the grout (adapted from Samwoo Anchor Technology 2012)

GJBGC4_2019_v35n7_29_f0002.png 이미지

Fig. 2. Stress distribution in the grout corresponding to anchor spacing

GJBGC4_2019_v35n7_29_f0003.png 이미지

Fig. 3. Schematic diagram of numerical modeling

GJBGC4_2019_v35n7_29_f0004.png 이미지

Fig. 4. Load-movement curves at anchor head

GJBGC4_2019_v35n7_29_f0005.png 이미지

Fig. 5. Axial load distribution in grout

GJBGC4_2019_v35n7_29_f0006.png 이미지

Fig. 6. Anchor modeling and element meshes

GJBGC4_2019_v35n7_29_f0007.png 이미지

Fig. 7. Axial stress distribution in the grout (weathered soil, QL=215.3 kN)

GJBGC4_2019_v35n7_29_f0008.png 이미지

Fig. 8. Maximum compressive and tensile stresses in the grout (0.8×QL)

GJBGC4_2019_v35n7_29_f0009.png 이미지

Fig. 9. Axial stress distribution in the grout (spacing=1.5 m, QL=215.3 kN)

GJBGC4_2019_v35n7_29_f0010.png 이미지

Fig. 10. Axial stress distribution in the grout according to pull-out load in weathered rock

GJBGC4_2019_v35n7_29_f0011.png 이미지

Fig. 11. Optimum spacing of anchor bodies

Table 1. Input soil properties (adopted from Kim et al., 2007)

GJBGC4_2019_v35n7_29_t0001.png 이미지

Table 2. Input properties of grout and anchor body

GJBGC4_2019_v35n7_29_t0002.png 이미지

Table 3. Analysis cases

GJBGC4_2019_v35n7_29_t0003.png 이미지

Table 4. Input soil properties (Seoul Metropolitan City, 2006)

GJBGC4_2019_v35n7_29_t0004.png 이미지

Table 5. Input properties of grout

GJBGC4_2019_v35n7_29_t0005.png 이미지

Table 6. Maximum pull-out load

GJBGC4_2019_v35n7_29_t0006.png 이미지

참고문헌

  1. ACI Committee 318 (2011), Building code requirements for structural concrete (ACI 318-11) and commentary, American Concrete Institute, Farmington Hills, Mich.
  2. Brinkgreve, R.B.J., Broere, W., and Waterman, D. (2018), PLAXIS 2D full manual, Netherlands.
  3. Chen, W. F. (1982) Plasticity in Reinforced Concrete, McGraw-Hill.
  4. Gouw, T.L. (2014), "Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems", International Journal of Applied Engineering Research, Vol.9, No.21, pp.8291-8311.
  5. Hertz, J.S., Moormann, G., Paquette, M., Shapiro, S.S., and Gallagher, M.J. (2015), "Removable Compressive Load Distributive Strand Anchors: Case History and Lessons Learned", International Association of Foundation Drilling Deep Foundation (IFCEE) Proceedings, pp.1597-1607.
  6. Hong, L. and Jun, F. (2015), "Study on Anchorage Mechanism of Pressure Dispersed Anchor by Numerical Analysis", Chinese Journal of Underground Space and Engineering, Vol.11, pp.446-455.
  7. Hsu, S.C. and Chang, C.M. (2007), "Pullout Performance of Vertical Anchors in Gravel Formation", Engineering Geology, Vol.90, No. (1-2), pp.17-29. https://doi.org/10.1016/j.enggeo.2006.11.004
  8. Hwang, T.H. and Lee, K.I. (2016), "Pullout behavior of Multiple Compression Type Anchor with the Space of Load Point", Journal of Korean Society of Hazard Mitigation, Vol.16, No.3, pp.271-279. https://doi.org/10.9798/KOSHAM.2016.16.3.271
  9. Kim, J.H., Jeong, H.S., Kwon, O.Y., and Shin, J.H. (2014), "A Study on the Characteristics of Multi Load Transfer Ground Anchor System", Journal of Korean Tunnel Underground Space Association, Vol.16, No.1, pp.25-50. https://doi.org/10.9711/KTAJ.2014.16.1.025
  10. Kim, N.K. (2003), "Performance of Tension and Compression Anchors in Weathered Soil", Journal of Geotechnical and Geoenvironmental Engineering, Vol.129, No.12, pp.1138-1150. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:12(1138)
  11. Kim, N.K., Park, J.S., and Kim, S.K. (2007), "Numerical Simulation of Ground Anchors", Computers and Geotechnics, Vol.34, No.6, pp.498-507. https://doi.org/10.1016/j.compgeo.2006.09.002
  12. Moosavi, M. and Bawden, W.F. (2003), "Shear Strength of Portland Cement Grout", Cement and Concrete Composites, Vol.25, No.7, pp.729-735. https://doi.org/10.1016/S0958-9465(02)00101-4
  13. Ministry of Land, Transport and Maritime Affairs (2010), Manual of ground anchor design, construction and maintenance, Korea.
  14. Ministry of Land, Transport and Maritime Affairs (2012), Design standard of concrete structures, Korea.
  15. Samwoo Anchor Technology (2012), Technical brochure, Korea.
  16. Seoul Metropolitan City (2006), Site investigation handbook, Korea.

피인용 문헌

  1. 앵커 시공 간격에 따른 비탈면 안전율 변화 연구 vol.30, pp.4, 2019, https://doi.org/10.9720/kseg.2020.4.515