DOI QR코드

DOI QR Code

Purification of Biohydrogen Produced From Palm Oil Mill Effluent Fermentation for Fuel Cell Application

  • Rohani, Rosiah (Research Center for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia) ;
  • Chung, Ying Tao (Department of Chemical and Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University (Block E) Kuala Lumpur Campus Jalan Mandarina Damai) ;
  • Mohamad, Izzati Nadia (Research Center for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia)
  • 투고 : 2018.12.05
  • 심사 : 2019.05.17
  • 발행 : 2019.08.01

초록

Fermentation of palm oil mill effluent (POME) produces biohydrogen in a mixture at a specific set condition. This research was conducted to purify the produced mixed biohydrogen via absorption and membrane techniques. Three different solvents, methyl ethanolamine (MEA), ammonia ($NH_3$) and potassium hydroxide (KOH) solutions, were used in absorption technique. The highest $H_2$ purity was found using 1M MEA solution with 5.0 ml/s feed mixed gas flow rate at 60 minutes absorption time. Meanwhile, the purified biohydrogen using a polysulfone membrane had the highest $H_2$ purity at 2~3 bar operating pressure. Upon testing with proton exchange membrane fuel cell (PEMFC), the highest current and power produced at 100% $H_2$ were 1.66 A and 8.1 W, while the lowest were produced at 50/50 vol% $H_2/CO_2$ (0.32 A and 0.49 W). These results proved that both purification techniques have significant potential for $H_2$ purification efficiency.

키워드

HHGHHL_2019_v57n4_469_f0001.png 이미지

Fig. 1. Schematic diagram of CO2 absorption technique.

HHGHHL_2019_v57n4_469_f0002.png 이미지

Fig. 2. Schematic diagram of Membrane Permeation Unit.

HHGHHL_2019_v57n4_469_f0003.png 이미지

Fig. 3. Composition of purified H2 obtained via absorption technique with different alkaline solutions (KOH, NH3, MEA) at 1 M concentration.

HHGHHL_2019_v57n4_469_f0004.png 이미지

Fig. 4. Gas permeation and selectivity for PSF Membrane.

HHGHHL_2019_v57n4_469_f0005.png 이미지

Fig. 5. Gas composition in permeate stream after gas permeation test for PSF membrane.

HHGHHL_2019_v57n4_469_f0006.png 이미지

Fig. 6. Power profile with current at different H2 concentration.

HHGHHL_2019_v57n4_469_f0007.png 이미지

Fig. 7. Average maximum power of PEMFC with different CO2 concentration.

Table 1. Summary of gas upgrading by absorption and membrane techniques

HHGHHL_2019_v57n4_469_t0001.png 이미지

Table 2. List of parameters for absorption technique

HHGHHL_2019_v57n4_469_t0002.png 이미지

Table 3. List of parameter for PEMFC application

HHGHHL_2019_v57n4_469_t0003.png 이미지

참고문헌

  1. Sayari, A., Belmabkhout, Y. and Serna-Guerrero, R., "Flue Gas Treatment via $CO_2$ Adsorption," Chem. Eng. J., 171(3), 760-774 (2011). https://doi.org/10.1016/j.cej.2011.02.007
  2. Yang, H., Fan, S., Lang, X., Wang, Y. and Nie, J., "Economic Comparison of Three Gas Separation Technologies for $CO_2$ Capture from Power Plant Flue Gas," Chinese J. Chem. Eng., 19(4), 615-620(2011). https://doi.org/10.1016/S1004-9541(11)60031-1
  3. Chin, M. J., Poh, P. E., Tey, B. T., Chan, E. S. and Chin, K. L., "Biogas from Palm Oil Mill Effluent (POME): Opportunities and Challenges from Malaysia's Perspective," Renew. Sustain. Energy Rev., 26, 717-726(2013). https://doi.org/10.1016/j.rser.2013.06.008
  4. Kim, K., Ingole, P. G., Kim, J. and Lee, H., "Separation Performance of PEBAX/PEI Hollow Fiber Composite Membrane for $SO_2$/$CO_2$/$N_2$ Mixed Gas," Chem. Eng. J., 233, 242-250(2013). https://doi.org/10.1016/j.cej.2013.08.030
  5. Rufford, T. E., Smart, S., Watson, G. C. Y., Graham, B. F., Boxall, J. and Diniz da Costa, J. C., "The Removal of $CO_2$ and $N_2$ from Natural Gas: A Review of Conventional and Emerging Process Technologies," J. Pet. Sci. Eng., 94-95, 123-154(2012). https://doi.org/10.1016/j.petrol.2012.06.016
  6. Bakonyi, P., Nemestothy, N. and Belafi-Bako, K., "Biohydrogen Purification by Membranes: An Overview on the Operational Conditions Affecting the Performance of Non-porous, Polymeric and Ionic Liquid Based Gas Separation Membranes," Int. J. Hydrogen Energy, 38(23), 9673-9687(2013). https://doi.org/10.1016/j.ijhydene.2013.05.158
  7. Diao, Y.-F., Zheng, X.-Y., He, B.-S., Chen, C.-H. and Xu, X.-C., "Experimental Study on Capturing $CO_2$ Greenhouse Gas by Ammonia Scrubbing," Energy Convers. Manag., 45(13-14), 2283-2296 (2004). https://doi.org/10.1016/j.enconman.2003.10.011
  8. Ma, S., Song, H., Wang, M., Yang, J. and Zang, B., "Research on Mechanism of Ammonia Escaping and Control in the Process of $CO_2$ Capture Using Ammonia Solution," Chem. Eng. Res. Des., 91(7), 1327-1334(2013). https://doi.org/10.1016/j.cherd.2013.01.020
  9. Kumbharkar, S. C., Liu, Y. and Li, K., "High Performance Polybenzimidazole Based Asymmetric Hollow Fibre Membranes for $H_{2}/CO_{2}$ Separation," J. Memb. Sci., 375(1-2), 231-240(2011). https://doi.org/10.1016/j.memsci.2011.03.049
  10. Modigell, M., Schumacher, M., Teplyakov V. V. and Zenkevich, V. B., "A Membrane Contactor for Efficient $CO_2$ Removal in Biohydrogen Production," Desalination, 224(1-3), 186-190(2008). https://doi.org/10.1016/j.desal.2007.02.092
  11. Badiei, M., Jahim, J. M., Anuar, N. and Sheikh Abdullah, S. R., "Effect of Hydraulic Retention Time on Biohydrogen Production from Palm oil Mill Effluent in Anaerobic Sequencing Batch Reactor," Int. J. Hydrogen Energy, 36(10), 5912-5919(2011). https://doi.org/10.1016/j.ijhydene.2011.02.054
  12. Chong, P. S., Jahim, J. M., Harun, S., Lim, S. S., Mutalib, S. A. and Hassan, O., "Enhancement of Batch Biohydrogen Production from Prehydrolysate of Acid Treated Oil Palm Empty Fruit Bunch," Int. J. Hydrogen Energy, 38(22), 9592-9599(2013). https://doi.org/10.1016/j.ijhydene.2013.01.154
  13. Mohamad, I. N., Rohani, R., Shahbudin, M., Masdar, M., Tusirin, M. and Nor, M., "Permeation Properties of Polymeric Membranes for Biohydrogen Purification," Int. J. Hydrogen Energy, 41(7), 4474-4488(2016). https://doi.org/10.1016/j.ijhydene.2015.08.002
  14. Maceiras, R., Alves, S. S., Cancela, M. A. and Alvarez, E., "Effect of Bubble Contamination on Gas-liquid Mass Transfer Coefficient on $CO_2$ Absorption in Amine Solutions," Chem. Eng. J., 137(2), 422-427(2008). https://doi.org/10.1016/j.cej.2007.04.036
  15. Zhao, B., Su, Y. and Peng, Y., "Effect of Reactor Geometry on Aqueous Ammonia-based Carbon Dioxide Capture in Bubble Column Reactors," Int. J. Greenh. Gas Control, 17, 481-487(2013). https://doi.org/10.1016/j.ijggc.2013.06.009
  16. Luis, P., "Use of Monoethanolamine (MEA) for $CO_2$ Capture in a Global Scenario: Consequences and Alternatives," Desalination, 380, 93-99(2016). https://doi.org/10.1016/j.desal.2015.08.004
  17. Spigarelli, B. P. and Kawatra, S. K., "Opportunities and Challenges in Carbon Dioxide Capture," J. $CO_2$ Util., 1, 69-87(2013). https://doi.org/10.1016/j.jcou.2013.03.002
  18. Choi, S., Lee, M., Oh, S. and Koo, J., "Gas Sorption and Transport of Ozone-treated Polysulfone," J. Memb. Scie., 221(1-2), 37-46 (2003). https://doi.org/10.1016/S0376-7388(03)00081-4
  19. Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M. M., Ismail, A. F. and Matsuura, T., "State-of-the-art Membrane Based $CO_2$ Separation Using Mixed Matrix Membranes (MMMs): An Overview on Current Status and Future Directions," Prog. Polym. Sci., 39(5), 817-861(2014). https://doi.org/10.1016/j.progpolymsci.2014.01.003
  20. David, O. C., Gorri, D., Urtiaga, A. and Ortiz, I., "Mixed Gas Separation Study for the Hydrogen Recovery from $H_{2}/CO/N_{2}/CO_{2}$ Post Combustion Mixtures Using a Matrimid Membrane," J. Memb. Sci., 378(1-2), 359-368(2011). https://doi.org/10.1016/j.memsci.2011.05.029
  21. Ebert, K., Fritsch, D., Koll, J. and Tjahjawiguna, C., "Influence of Inorganic Fillers on the Compaction Behaviour of Porous Polymer Based Membranes," J. Memb. Sci., 233(1-2), 71-78(2004). https://doi.org/10.1016/j.memsci.2003.12.012
  22. Bakonyi, P., Nemestothy, N., Lanko, J., Rivera, I., Buitron, G. and Belafi-Bako, K., "Simultaneous Biohydrogen Production and Purification in a Double-membrane Bioreactor System," Int. J. Hydrogen Energy, 40(4), 1690-1697(2015). https://doi.org/10.1016/j.ijhydene.2014.12.002
  23. Ahluwalia, R. K. and Wang, X., "Effect of CO and $CO_2$ Impurities on Performance of Direct Hydrogen Polymer-electrolyte Fuel Cells," J. Power Sources, 180(1), 122-131(2008). https://doi.org/10.1016/j.jpowsour.2008.01.087

피인용 문헌

  1. Comparison of separation performance of absorption column and membrane contactor system for biohydrogen upgraded from palm oil mill effluent fermentation vol.40, pp.3, 2019, https://doi.org/10.1002/ep.13573