DOI QR코드

DOI QR Code

Whole brain radiotherapy using four-field box technique with tilting baseplate for parotid gland sparing

  • Park, Jaehyeon (Department of Radiation Oncology, Yeungnam University College of Medicine) ;
  • Yea, Ji Woon (Department of Radiation Oncology, Yeungnam University College of Medicine)
  • Received : 2019.01.17
  • Accepted : 2019.03.12
  • Published : 2019.03.31

Abstract

Purpose: The aim of this study is to evaluate the efficacy and feasibility of four-field box whole brain radiotherapy (FB-WBRT) with tilting baseplate by comparing bilateral WBRT (B-WBRT). Methods and Materials: Between March 2016 and September 2018, 20 patients with brain metastases underwent WBRT using the four-field box technique. WBRT is performed with a dose of 30 Gy in 10 fractions daily. Two computed tomography simulations per person were performed. One was in the traditional supine position for B-WBRT and the other by applying the tilting acrylic supine baseplate to elevate the head by 40° for FB-WBRT. The B-WBRT used the field-in-field technique, which is the most commonly used method in our institution. The FB-WBRT comprised anterior, posterior, and bilateral beams. A wedge was applied in anterior and posterior fields to compensate for skull convexity. Results: The average of Dmean of both parotid glands was 10.2 Gy (range, 3.8 to 17.8 Gy) in B-WBRT and 5.4 Gy (range, 2.0 to 11.7 Gy) in FB-WBRT (p < 0.05). Compared to B-WBRT, FB-WBRT reduced the mean dose of the right and left parotid glands from 10.1 Gy to 4.9 Gy and from 10.4 Gy to 5.8 Gy, respectively (p < 0.05). Further, V5, V10, V15, V20, and V25 for the parotid gland decreased significantly in FB-WBRT (p < 0.05). The Dmax and Dmean of lens decreased according to the dose-volume histogram. Conclusion: Compared to B-WBRT, FB-WBRT with a tilting baseplate is a simple and effective method that takes feature of noncoplanar beam to protect the parotid gland.

Keywords

References

  1. Kim T, Song C, Han JH, et al. Epidemiology of intracranial metastases in Korea: a national cohort investigation. Cancer Res Treat 2018;50:164-74. https://doi.org/10.4143/crt.2017.072
  2. Coia LR. The role of radiation therapy in the treatment of brain metastases. Int J Radiat Oncol Biol Phys 1992;23:229-38. https://doi.org/10.1016/0360-3016(92)90567-2
  3. Agboola O, Benoit B, Cross P, et al. Prognostic factors derived from recursive partition analysis (RPA) of Radiation Therapy Oncology Group (RTOG) brain metastases trials applied to surgically resected and irradiated brain metastatic cases. Int J Radiat Oncol Biol Phys 1998;42:155-9. https://doi.org/10.1016/S0360-3016(98)00198-9
  4. Auperin A, Arriagada R, Pignon JP, et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission: Prophylactic Cranial Irradiation Overview Collaborative Group. N Engl J Med 1999;341:476-84. https://doi.org/10.1056/NEJM199908123410703
  5. Gaspar LE, Scott C, Murray K, Curran W. Validation of the RTOG recursive partitioning analysis (RPA) classification for brain metastases. Int J Radiat Oncol Biol Phys 2000;47:1001-6. https://doi.org/10.1016/S0360-3016(00)00547-2
  6. Shaw EG, Su JQ, Eagan RT, Jett JR, Maksymiuk AW, Deigert FA. Prophylactic cranial irradiation in complete responders with small-cell lung cancer: analysis of the Mayo Clinic and North Central Cancer Treatment Group data bases. J Clin Oncol 1994;12:2327-32. https://doi.org/10.1200/JCO.1994.12.11.2327
  7. Zhang W, Jiang W, Luan L, Wang L, Zheng X, Wang G. Prophylactic cranial irradiation for patients with small-cell lung cancer: a systematic review of the literature with metaanalysis. BMC Cancer 2014;14:793. https://doi.org/10.1186/1471-2407-14-793
  8. Rohan EA, Miller N, Bonner F 3rd, et al. Comprehensive cancer control: promoting survivor health and wellness. Cancer Causes Control 2018;29:1277-85. https://doi.org/10.1007/s10552-018-1107-z
  9. Noh OK, Chun M, Nam SS, et al. Parotid gland as a risk organ in whole brain radiotherapy. Radiother Oncol 2011;98:223-6. https://doi.org/10.1016/j.radonc.2010.12.013
  10. Cho O, Chun M, Park SH, et al. Parotid gland sparing effect by computed tomography-based modified lower field margin in whole brain radiotherapy. Radiat Oncol J 2013;31:12-7. https://doi.org/10.3857/roj.2013.31.1.12
  11. Fiorentino A, Chiumento C, Caivano R, et al. "Whole brain radiotherapy: are parotid glands organs at risk?" Radiother Oncol 2012;103:130-1. https://doi.org/10.1016/j.radonc.2012.01.013
  12. Park J, Park JW, Yea JW. Non-coplanar whole brain radiotherapy is an effective modality for parotid sparing. Yeungnam Univ J Med 2019;36:36-42. https://doi.org/10.12701/yujm.2019.00087
  13. Vissink A, Jansma J, Spijkervet FK, Burlage FR, Coppes RP. Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol Med 2003;14:199-212. https://doi.org/10.1177/154411130301400305
  14. Lal P, Bajpai R, Khurana R, Das KJ, et al. Changes in salivary flow rates in head and neck cancer after chemoradiotherapy. J Cancer Res Ther 2010;6:458-62. https://doi.org/10.4103/0973-1482.77105
  15. Deasy JO, Moiseenko V, Marks L, Chao KS, Nam J, Eisbruch A. Radiotherapy dose-volume effects on salivary gland function. Int J Radiat Oncol Biol Phys 2010;76(3 Suppl):S58-63. https://doi.org/10.1016/j.ijrobp.2009.06.090
  16. Trignani M, Genovesi D, Vinciguerra A, et al. Parotid glands in whole-brain radiotherapy: 2D versus 3D technique for no sparing or sparing. Radiol Med 2015;120:324-8. https://doi.org/10.1007/s11547-014-0436-6
  17. Burlage FR, Coppes RP, Meertens H, Stokman MA, Vissink A. Parotid and submandibular/sublingual salivary flow during high dose radiotherapy. Radiother Oncol 2001;61:271-4. https://doi.org/10.1016/S0167-8140(01)00427-3
  18. Ghosh-Laskar S, Yathiraj PH, Dutta D, et al. Prospective randomized controlled trial to compare 3-dimensional conformal radiotherapy to intensity-modulated radiotherapy in head and neck squamous cell carcinoma: long-term results. Head Neck 2016;38 Suppl 1:E1481-7. https://doi.org/10.1002/hed.24263
  19. Peng G, Wang T, Yang KY, et al. A prospective, randomized study comparing outcomes and toxicities of intensitymodulated radiotherapy vs. conventional two-dimensional radiotherapy for the treatment of nasopharyngeal carcinoma. Radiother Oncol 2012;104:286-93. https://doi.org/10.1016/j.radonc.2012.08.013
  20. Gupta T, Agarwal J, Jain S, et al. Three-dimensional conformal radiotherapy (3D-CRT) versus intensity modulated radiation therapy (IMRT) in squamous cell carcinoma of the head and neck: a randomized controlled trial. Radiother Oncol 2012;104:343-8. https://doi.org/10.1016/j.radonc.2012.07.001
  21. Nutting CM, Morden JP, Harrington KJ, et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol 2011;12:127-36. https://doi.org/10.1016/S1470-2045(10)70290-4
  22. Gupta T, Kannan S, Ghosh-Laskar S, Agarwal JP. Systematic review and meta-analyses of intensity-modulated radiation therapy versus conventional two-dimensional and/or or threedimensional radiotherapy in curative-intent management of head and neck squamous cell carcinoma. PLoS One 2018;13:e0200137. https://doi.org/10.1371/journal.pone.0200137
  23. Chung E, Noh JM, Lee KC, et al. Dummy run of quality assurance program before prospective study of hippocampussparing whole-brain radiotherapy (HS-WBRT) and simultaneous integrated boost (SIB) for multiple brain metastases from non-small cell lung cancer: Korean Radiation Oncology Group (KROG) 17-06 study. Cancer Res Treat 2018 Oct 15 [Epub]. http://doi.org/10.4143/crt.2018.415.
  24. Gondi V, Tolakanahalli R, Mehta MP, et al. Hippocampalsparing whole-brain radiotherapy: a "how-to" technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2010;78:1244-52. https://doi.org/10.1016/j.ijrobp.2010.01.039
  25. Oehlke O, Wucherpfennig D, Fels F, et al. Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: Local tumour control and survival. Strahlenther Onkol 2015;191:461-9. https://doi.org/10.1007/s00066-014-0808-9
  26. Hall WA, Fox TH, Jiang X, et al. Treatment efficiency of volumetric modulated arc therapy in comparison with intensity-modulated radiotherapy in the treatment of prostate cancer. J Am Coll Radiol 2013;10:128-34. https://doi.org/10.1016/j.jacr.2012.06.014
  27. Mashhour K, Kamaleldin M, Hashem W. RapidArc vs conventional IMRT for head and neck cancer irradiation: is faster necessary better? Asian Pac J Cancer Prev 2018;19:207-11.
  28. Yan H, Dai JR, Li YX. A fast optimization approach for treatment planning of volumetric modulated arc therapy. Radiat Oncol 2018;13:101. https://doi.org/10.1186/s13014-018-1050-x
  29. Paravati AJ, Boero IJ, Triplett DP, et al. Variation in the cost of radiation therapy among Medicare patients with cancer. J Oncol Pract 2015;11:403-9. https://doi.org/10.1200/JOP.2015.005694
  30. Van de Werf E, Verstraete J, Lievens Y. The cost of radiotherapy in a decade of technology evolution. Radiother Oncol 2012;102:148-53. https://doi.org/10.1016/j.radonc.2011.07.033
  31. Wang K, Pearlstein KA, Moon DH, et al. Assessment of risk of xerostomia after whole-brain radiation therapy and association with parotid dose. JAMA Oncol 2018 Nov 29 [Epub]. http://doi.org/10.1001/jamaoncol.2018.4951.

Cited by

  1. Dose perturbation by metallic biliary stent in external beam radiotherapy of pancreato-biliary cancers vol.42, pp.3, 2019, https://doi.org/10.1007/s13246-019-00774-1
  2. Use of a head-tilting baseplate during volumetric-modulated arc therapy (VMAT) to better protect organs at risk in hippocampal sparing whole brain radiotherapy (HS-WBRT) vol.15, pp.4, 2020, https://doi.org/10.1371/journal.pone.0232430
  3. Dosimetric Comparison of Noncoplanar and Coplanar Volumetric Modulated Arc Therapy Plans for Esophageal Cancer vol.31, pp.4, 2019, https://doi.org/10.14316/pmp.2020.31.4.179
  4. Examination of the best head tilt angle to reduce the parotid gland dose maintaining a safe level of lens dose in whole‐brain radiotherapy using the four‐field box technique vol.22, pp.2, 2019, https://doi.org/10.1002/acm2.13151