Fig. 1 Locations of study areas (three watersheds for channel width measurements (a)~(c) and one watershed for swat model application (d))
Fig. 2 Landuse Maps for study areas
Fig. 3 Landuse, Soil and Watershed Maps for Ju-cheon watershed
Fig. 4 Measurement method of channel and floodplain widths using satellite image
Fig. 5 Comparison of current and newly developed regression equations for estimating (a) channel and (b) floodplain widths
Fig. 6 Comparison of (a) bankfull width and (b) floodplain width estimated by the current and newly developed regression equations for Jucheon watershed
Fig. 7 Comparison of (a) water depth and (b) flow velocity estimated by current and newly developed regression equations for Ju-cheon watershed
Fig. 8 Comparison of suspended solid estimated by current and newly developed regression equations for Ju-cheon watershed
Table 1 Analysis landuse at study areas
Table 2 Analysis slope at study areas
References
- Allen, P. M., J. G. Arnold, and B. W. Byars, 1994. Downstream channel geometry for use in planning-level models. Journal of the American Water Resources Association 30(4): 663-671. doi:10.1111/j.1752-1688.1994.tb03321.x.
- Ames, D. P., E. B. Rafn, R. Van Kirk, and B. Crosby, 2009. Estimation of stream channel geometry in Idaho using GIS-derived watershed characteristics. Environmental Modelling & Software 24(3): 444-448. doi:10.1016/j.envsoft.2008.08.008.
- Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams, 1998. Large area hydrologic modeling and assessment part I: model development. JAWRA Journal of the American Water Resources Association 34(1): 73-89. doi:10.1111/j.1752-1688.1998.tb05961.x.
- Choi, B. W., H. S. Kang, and W. H. Lee, 2018. Baseflow contribution to streamflow and aquatic habitats using physical habitat simulations. Water 10(10): 1304. doi: 10.3390/w10101304.
- Cinotto, P. J., 2003. Development of regional curves of bankfull-channel geometry and discharge for streams in the non-urban piedmont physiographic province, Pennsylvania and Maryland. Water Resources Investigations Report 3: 4014. doi:10.3133/wri034014.
- Hanson, P. J., and J. F. Weltzin, 2000. Drought disturbance from climate change: response of United States forests. Science of the total environment 262(3): 205-220. doi:10.1016/S0048-9697(00)00523-4.
- Hur, J. W., and J. K. Kim, 2009. Assessment of riverine health condition and estimation of optimal ecological flowrate considering fish Habitat in downstream of Yongdam Dam. Journal of Korea Water Resources Association 42(6): 481-491 (in Korean). doi:10.3741/JKWRA.2009.42.6.481.
- Jang, J. H., and J. H. Ahn, 2012. Hydrologic and water quality responses to precipitation extremes in Nakdong River Basin. Journal of Korea Water Resources Association 45: 1081-1091 (in Korean). doi:10.3741/JKWRA.2012.45.11.1081.
- Ko, J. W., H. J. Baek, and W. T. Kwon, 2005. The characteristics of precipitation and regionalization during rainy season in Korea. Asia-Pacific Journal of Atmospheric Sciences 41(1): 101-114 (in Korean).
- Kwon, W. T., 2005. Current status and perspectives of climate change sciences. Asia-Pacific Journal of Atmospheric Sciences 41(2-1): 325-336 (in Korean).
- Leopold, L. B., and T. Maddock, 1953. The hydraulic geometry of stream channels and some physiographic implications, U.S. Geological Survey Professional Paper 252.
- Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams, 2011. Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.
- Shin, S. B., S. M. Jun, J. H. Song, K. Kim, J. H. Ryu, J. Park, D. G. Lee, K. D. Lee, and M. S. Kang, 2016. Estimating Ungauged River section for flood stage analysis. Journal of the Korean Society of Agricultural Engineers 58(5); 11-18 (in Korean). doi:10.5389/KSAE.2016.58.5.011.