DOI QR코드

DOI QR Code

Effect of Hydrophobic Surface Coating on Flowability of Ceramic Tile Granule Powders

표면 소수화 처리를 통한 도자타일 과립 분말의 유동 특성

  • Kim, Jin-Ho (Ceramicware Technology Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Ung-Soo (Ceramicware Technology Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Kyu-Sung (Ceramicware Technology Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Kwang-Take (Ceramicware Technology Center, Korea Institute of Ceramic Engineering and Technology)
  • 김진호 (한국세라믹기술원 이천분원) ;
  • 김응수 (한국세라믹기술원 이천분원) ;
  • 한규성 (한국세라믹기술원 이천분원) ;
  • 황광택 (한국세라믹기술원 이천분원)
  • Received : 2019.06.07
  • Accepted : 2019.06.28
  • Published : 2019.07.27

Abstract

Generally, ceramic tiles for building construction are manufactured by dry forming process using granular powders prepared by spray drying process after mixing and grinding of mineral raw materials. In recent years, as the demand for large ceramic tiles with natural texture has increased, the development of granule powders with high packing ratio and excellent flowability has become more important. In this study, ceramic tile granule powders are coated with hydrophobically treated silica nanoparticles. The effects of hydrophobic silica coating on the flowability of granule powders and the strength of the green body are investigated in detail. Silica nanoparticles are hydrophobically treated with GPTMS(3-glycidoxypropyl trimethoxy silane), which is an epoxy-based silane coupling agent. As the coating concentration increases, the angle of repose and the compressibility decrease. The tap density and flowability index increase after silica coating treatment. These results indicate that hydrophobic treatment can improve the flowability of the granular powder, and prevent cracking of green body at high pressure molding.

Keywords

References

  1. M. Dondi, M. Raimondo and C. Zanelli, Appl. Clay Sci., 96, 91 (2014). https://doi.org/10.1016/j.clay.2014.01.013
  2. R. Soldati, C. Zanelli, G. Guarini, S. Fazio, M. C. Bignozzi and M. Dondi, J. Eur. Ceram. Soc., 38, 4118 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.04.042
  3. J. M. Perez and M. Pomero, Ceram. Int., 40, 1365 (2014). https://doi.org/10.1016/j.ceramint.2013.07.018
  4. F. G. Melchiades, L. R. Santos, S. Nastri and A. O. Boschi, In Proceedings of the Qualicer, p.1 (2012).
  5. J. L. Amoros, V. Cantavella, J. C. Jarque and C. Feliu, J. Eur. Ceram. Soc., 28, 2823 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.05.004
  6. Z. Shu, J. Garcia-Ten, E. Monfort, J. L. Amoros and Y. X. Wang, Ceram. Int., 38, 517 (2012). https://doi.org/10.1016/j.ceramint.2011.07.037
  7. T. Mori, H. Imazeki, K. Yamamoto and K. Tsuchiya, Ceram. Int., 43, 11170 (2017). https://doi.org/10.1016/j.ceramint.2017.05.165
  8. P. Ramavath, M. Swathi, M.B. Suresh and R. Johnson, Adv. Powder Technol., 24, 667 (2013). https://doi.org/10.1016/j.apt.2012.12.006
  9. H. Mahdjoub, P. Roy, C. Filiatre, G. Bertrand and C. Coddet, J. Eur. Ceram. Soc., 23, 1637 (2003). https://doi.org/10.1016/S0955-2219(02)00412-0
  10. G. Bertrand, P. Roy, C. Filiatre and C. Coddet, Chem. Eng. Sci., 60, 95 (2005). https://doi.org/10.1016/j.ces.2004.04.042
  11. S. B. Jeong, J. Y. Hyun and Y. B. Chae, J. Korean Soc. Geosystem Eng., 41, 490 (2004).
  12. J. H. Choi, E. T. Kang, J. W. Lee, U. S. Kim and W. S. Cho, J. Ceram. Process. Res., 19, 43 (2018). https://doi.org/10.36410/JCPR.2018.19.1.43
  13. S. J. Park and K. S. Youn, Korean J. Food Preserv., 15, 332 (2008).
  14. R. T. Pusapati and T. V. Rao, Indian J. Res. Pharm. Biotechnol., 2, 1360, (2014).
  15. J. H. Kim, J. M. Oh, G. S. Khang, J. K. Jeong, J. S. Lee, S. Y. Jeung and H. B. Lee, J. Korean Pharm. Sci., 32, 277 (2002).
  16. V. E. Henkes, G. Y. Onoda and W. Carty, Science of Whitewares, p.112, Wiley (1996).
  17. C. S. Lin and S. T. Lin, J. Mater. Process Tech., 201, 657 (2008). https://doi.org/10.1016/j.jmatprotec.2007.11.159
  18. P. P. Nampi, S. Kume, Y. Hotta, K. Watari, M. Itoh, H. Toda and A. Matsutani, Ceram. Int., 37, 7245 (2014).
  19. J. H. Jung, MS.D. Thesis (in Korean), p.50, Mokpo National Univ., Mokpo (2017).
  20. R. L. Carr, Chem. Eng., 72, 163 (1965).
  21. B. R. Yoo and D. E. Jung, Polym. Sci. Technol., 20, 124 (2009).