참고문헌
- Long JS, Mistry B, Haslam SM, Barclay WS. 2019. Host and viral determinants of influenza A virus species specificity. Nat. Rev. Microbiol. 17: 67-81. https://doi.org/10.1038/s41579-018-0115-z
- Dou D, Revol R, Ostbye H, Wang H, Daniels R. 2018. Influenza A virus cell entry, replication, virion assembly and movement. Front Immunol. 9: 1581. https://doi.org/10.3389/fimmu.2018.01581
- Medina RA. 2018. 1918 Influenza Virus: 100 years on, are we prepared against the next influenza pandemic? Nat. Rev. Microbiol. 16: 61-62. https://doi.org/10.1038/nrmicro.2017.174
- WHO. 2019. Influenza (seasonal). Influenza. URL: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) Accessed on May 10th 2019.
- Ju H, Zhang J, Huang B, Kang D, Huang B, Liu X, et al. 2017. Inhibitors of influenza virus polymerase acidic (PA) endonuclease: contemporary developments and perspectives. J. Med. Chem. 60: 3533-3551. https://doi.org/10.1021/acs.jmedchem.6b01227
- van de Wakker SI, Fischer MJE, Oosting RS. 2017. New drug-strategies to tackle viral-host interactions for the treatment of influenza virus infections. Eur. J. Pharmacol. 809: 178-190. https://doi.org/10.1016/j.ejphar.2017.05.038
- Regoes RR, Bonhoeffer S. 2006. Emergence of drug-resistant influenza virus: population dynamical considerations. Science 312: 389-391. https://doi.org/10.1126/science.1122947
- Kaasalainen U, Fewer DP, Jokela J, Wahlsten M, Sivonen K, Rikkinen J. 2012. Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proc. Natl. Acad. Sci. USA 109: 5886-5891. https://doi.org/10.1073/pnas.1200279109
- Shukla V, Joshi GP, Rawat MSM. 2010. Lichens as a potential natural source of bioactive compounds: a review. Phytochem. Rev. 9: 303-314. https://doi.org/10.1007/s11101-010-9189-6
- Feuerer T, Hawksworth DL. 2007. Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan's floristic regions. Biodivers. Conserv. 16: 85-98. https://doi.org/10.1007/s10531-006-9142-6
- Ahmadjian V. 1995. Lichens are more important than you think. Bioscience 45: 124. https://doi.org/10.1093/bioscience/45.3.124
- Stocker-Wörgötter E. 2008. Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimatemetabolite production, and PKS genes. Nat. Prod. Rep. 25: 188-200. https://doi.org/10.1039/B606983P
- Zhou R, Yang Y, Park S, Nguyen TT, Seo Y, Lee KH, et al. 2017. The lichen secondary metabolite atranorin suppresses lung cancer cell motility and tumorigenesis. Sci. Rep. 7: 8136. https://doi.org/10.1038/s41598-017-08225-1
- Nguyen TT, Yoon S, Yang Y, Lee H-B, Oh S, Jeong M-H, et al. 2014. Lichen secondary metabolites in Flavocetraria cucullata exhibit anti-cancer effects on human cancer cells through the induction of apoptosis and suppression of tumorigenic potentials. PLoS One 9: e111575. https://doi.org/10.1371/journal.pone.0111575
- Yilmaz M, Türk AÖ, Kivanç M, Tay T. 2004. The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (-)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Z. Naturforsch C. 59(3-4): 249-254. https://doi.org/10.1515/znc-2004-3-423
- Honda NK, Freitas DS, Micheletti AC, Pereira Carvalho NC, Spielmann AA, Da Silva Canez L. 2016. Parmotrema screminiae (Parmeliaceae), a novel lichen species from Brazil with potent antimicrobial activity. Orbital - Electron J. Chem. 8: 334-340.
- Kosanic M, Rankovic B, Vukojevic J. 2011. Antioxidant properties of some lichen species. J. Food Sci. Technol. 48: 584-590. https://doi.org/10.1007/s13197-010-0174-2
- Brisdelli F, Perilli M, Sellitri D, Piovano M, Garbarino JA, Nicoletti M, et al. 2013. Cytotoxic activity and antioxidant capacity of purified lichen metabolites: an in vitro study. Phyther. Res. 27: 431-437. https://doi.org/10.1002/ptr.4739
- Perry NB, Benn MH, Brennan NJ, Burgess EJ, Ellis G, Galloway DJ, et al. 1999. Antimicrobial, antiviral and cytotoxic activity of New Zealand lichens. Lichenologist 31: 627-636. https://doi.org/10.1006/lich.1999.0241
- Daowan Lai, Damian C. Odimegwu, Charles Esimone, Thomas Grunwald PP. 2013. Phenolic compounds with in vitro activity against respiratory syncytial virus from the Nigerian lichen Ramalina farinacea. Planta Med. 79: 1440-1446. https://doi.org/10.1055/s-0033-1350711
- Esimone CO, Ofokansi KC, Adikwu MU, Ibezim EC, Abonyi DO, Odaibo GN, et al. 2007. In vitro evaluation of the antiviral activity of extracts from the lichen Parmelia perlata (L.) Ach. against three RNA viruses. J. Infect. Dev. Ctries. 1: 315-320. https://doi.org/10.3855/jidc.370
- Vu TH, Lamer AC Le, Lalli C, Samson JBM, Devehat FL Le, Seyec J Le. 2015. Depsides: Lichen metabolites active against hepatitis C virus. PLoS One 10(3): e120405.
- Tanas S, Odabasoglu F, Halici Z, Cakir A, Aygun H, Ali A, et al. 2010. Evaluation of anti-inflammatory and antioxidant activities of Peltigera rufescens lichen species in acute and chronic inflammation models. J. Nat. Med. 64: 42-49. https://doi.org/10.1007/s11418-009-0367-z
- Studzinska-Sroka E, Dubino A. 2018. Lichens as a source of chemical compounds with anti-inflammatory activity. Herba Polanica 64: 56-64. https://doi.org/10.2478/hepo-2018-0005
- Sokolov DN, Zarubaev V V, Shtro AA, Polovinka MP, Luzina OA, Komarova NI, et al. 2012. Anti-viral activity of (-)- and (+)-usnic acids and their derivatives against influenza virus A(H1N1)2009. Bioorg. Med. Chem. Lett. 22: 7060-7064. https://doi.org/10.1016/j.bmcl.2012.09.084
- Shtro AA, Zarubaev V V, Luzina OA, Sokolov DN, Kiselev OI, Salakhutdinov NF. 2014. Novel derivatives of usnic acid effectively inhibiting reproduction of influenza A virus. Bioorg. Med. Chem. 22: 6826-6836. https://doi.org/10.1016/j.bmc.2014.10.033
- Shtro A, Zarubaev V, Luzina O, Sokolov D, Salakhutdinov N. 2015. Derivatives of usnic acid inhibit broad range of influenza viruses and protect mice from lethal influenza infection. Antivir. Chem. Chemother. 24: 92-98. https://doi.org/10.1177/2040206616636992
- Vaidya B, Cho S-Y, Oh K-S, Kim SH, Kim YO, Jeong E-H, et al. 2016. Effectiveness of periodic treatment of quercetin against influenza A virus H1N1 through modulation of protein expression. J. Agric. Food Chem. 64: 4416-4425. https://doi.org/10.1021/acs.jafc.6b00148
- Lu X, Zhu H. 2005. Tube-Gel Digestion. Mol. Cell Proteomics 4: 1948-1958. https://doi.org/10.1074/mcp.M500138-MCP200
- Yang H-Y, Kwon J, Cho E-J, Choi H-I, Park C, Park H-R, et al. 2010. Proteomic analysis of protein expression affected by peroxiredoxin V knock-down in hypoxic kidney. J. Proteome Res. 9: 4003-4015. https://doi.org/10.1021/pr100190b
- Burniston JG, Connolly J, Kainulainen H, Britton SL, Koch LG. 2014. Label-free profiling of skeletal muscle using high-definition mass spectrometry. Proteomics 14: 2339-2344. https://doi.org/10.1002/pmic.201400118
- Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. 2003. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 34: 374-378. https://doi.org/10.2144/03342mt01
- Muramoto Y, Noda T, Kawakami E, Akkina R, Kawaoka Y. 2013. Identification of novel influenza A virus proteins translated from PA mRNA. J. Virol. 87: 2455-2462. https://doi.org/10.1128/JVI.02656-12
- Fernandez-Moriano C, Divakar PK, Crespo A, Gomez-Serranillos MP. 2017. In vitro neuroprotective potential of lichen metabolite fumarprotocetraric acid via intracellular redox modulation. Toxicol. Appl. Pharmacol. 316: 83-94. https://doi.org/10.1016/j.taap.2016.12.020
- Fernandez-Moriano C, Divakar PK, Crespo A, Gomez-Serranillos MP. 2017. Protective effects of lichen metabolites evernic and usnic acids against redox impairment-mediated cytotoxicity in central nervous system-like cells. Food Chem. Toxicol. 105: 262-277. https://doi.org/10.1016/j.fct.2017.04.030
- Denisova O V, Soderholm S, Virtanen S, Von Schantz C, Bychkov D, Vashchinkina E, et al. 2014. Akt inhibitor MK2206 prevents influenza pH1N1 virus infection in vitro. Antimicrob. Agents Chemother. 58: 3689-3696. https://doi.org/10.1128/AAC.02798-13
-
Guo X, Zhu Z, Zhang W, Meng X, Zhu Y, Han P, et al. 2017. Nuclear translocation of
$HIF-1{\alpha}$ induced by influenza A (H1N1) infection is critical to the production of proinflammatory cytokines. Emerg. Microbes Infect. 6(5): e39. https://doi.org/10.1038/emi.2017.21 - Cha IS, Kwon J, Park S Bin, Jang H Bin, Nho SW, Kim YK, et al. 2013. Heat shock protein profiles on the protein and gene expression levels in olive flounder kidney infected with Streptococcus parauberis. Fish Shellfish Immunol. 34: 1455-1462. https://doi.org/10.1016/j.fsi.2013.03.355
- Kajihara M, Manzoor R, Fujikura D, Takada A, Yoshida R, Kuroda K, et al. 2014. Heat shock protein 70 modulates influenza A virus polymerase activity. J. Biol. Chem. 289: 7599-7614. https://doi.org/10.1074/jbc.M113.507798
- Batra J, Tripathi S, Kumar A, Katz JM, Cox NJ, Lal RB, et al. 2016. Human heat shock protein 40 (Hsp40/DnaJB1) promotes influenza A virus replication by assisting nuclear import of viral ribonucleoproteins. Sci. Rep. 6: 19063. https://doi.org/10.1038/srep19063
- Mirsaeidi M, Gidfar S, Vu A, Schraufnagel D. 2016. Annexins family: insights into their functions and potential role in pathogenesis of sarcoidosis. J. Transl. Med. 14: 89-97. https://doi.org/10.1186/s12967-016-0843-7
- Arora S, Lim W, Bist P, Perumalsamy R, Lukman HM, Li F, et al. 2016. Influenza A virus enhances its propagation through the modulation of Annexin-A1 dependent endosomal trafficking and apoptosis. Cell Death Differ. 23: 1243-1256. https://doi.org/10.1038/cdd.2016.19
- Ma Y, Sun J, Gu L, Bao H, Zhao Y, Shi L, et al. 2017. Annexin A2 (ANXA2) interacts with nonstructural protein 1 and promotes the replication of highly pathogenic H5N1 avian influenza virus. BMC Microbiol. 17: 191-199. https://doi.org/10.1186/s12866-017-1097-0
- LeBouder F, Lina B, Rimmelzwaan GF, Riteau B. 2010. Plasminogen promotes influenza A virus replication through an annexin 2-dependent pathway in the absence of neuraminidase. J. Gen. Virol. 91: 2753-2761. https://doi.org/10.1099/vir.0.023804-0
- Chang C-W, Peng T-Y, Yen H-R, Lin T-Y, Horng J-T, Wu M-S, et al. 2011. Mechanism of action of the suppression of influenza virus replication by Ko-Ken Tang through inhibition of the phosphatidylinositol 3-kinase/Akt signaling pathway and viral RNP nuclear export. J. Ethnopharmacol. 134: 614-623. https://doi.org/10.1016/j.jep.2011.01.005
- Werth N, Beerlage C, Rosenberger C, Yazdi AS, Edelmann M, Amr A, et al. 2010. Activation of hypoxia inducible factor 1 is a general phenomenon in infections with human pathogens. PLoS One 5: e11576. https://doi.org/10.1371/journal.pone.0011576
-
Ren L, Zhang W, Han P, Zhang J, Zhu Y, Meng X, et al. 2019. Influenza A virus (H1N1) triggers a hypoxic response by stabilizing hypoxia-inducible
$factor-1{\alpha}$ via inhibition of proteasome. Virology 530: 51-58. https://doi.org/10.1016/j.virol.2019.02.010 - Shrestha N, Bahnan W, Wiley DJ, Barber G, Fields KA, Schesser K. 2012. Eukaryotic initiation factor 2 (eIF2) signaling regulates proinflammatory cytokine expression and bacterial invasion. J. Biol. Chem. 287: 28738-28744. https://doi.org/10.1074/jbc.M112.375915
- Verhelst J, Parthoens E, Schepens B, Fiers W, Saelens X. 2012. Interferon-inducible protein MX1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex assembly. J. Virol. 86: 13445-13455. https://doi.org/10.1128/JVI.01682-12