References
- Bano A, Fatima M. 2009. Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol. Fert. Soils 45: 405-413. https://doi.org/10.1007/s00374-008-0344-9
- Jha Y, Subramanian RB, Patel S. 2011. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol. Plant. 33: 797-802. https://doi.org/10.1007/s11738-010-0604-9
- Munns R, Gilliham M. 2015. Salinity tolerance of crops - what is the cost? New Phytol. 208: 668-673. https://doi.org/10.1111/nph.13519
- Ruan CJ, da Silva JAT, Mopper S, Qin P, Lutts S. 2010. Halophyte improvement for a salinized world. Crit. Rev. Plant Sci. 29: 329-359. https://doi.org/10.1080/07352689.2010.524517
- Lakhdar A, Rabhi M, Ghnay a T, Montemurro F, Jedidi N, Abdelly C. 2009. Effectiveness of compost use in salt-affected soil. J. Hazard Mater. 171: 29-37. https://doi.org/10.1016/j.jhazmat.2009.05.132
- Tester M, Langridge P. 2010. Breeding technologies to increase crop production in a changing world. Science 327: 818-822. https://doi.org/10.1126/science.1183700
- Moreno-Limon S, Maiti RK, Nunez-Gonzalez A, Star JV, Foroughbakhch R, Gamez-Gonzalez H. 2000. Genotypic variability in bean cultivars (Phaseolus vulgaris L.) for resistance to salinity at the seedling stage. Ind. Agric. 44: 1-12.
- Mano Y, Takeda K. 2001. Genetic resources of salt tolerance at germination and the seedling stage in wheat. Jpn. J. Crop. Sci. 70: 215-220. https://doi.org/10.1626/jcs.70.215
- Athar H, Ashraf M. 2009. Strategies for crop improvement against salinity and drought stress: an overview. In Salinity and Water Stress. pp. 1-16: Springer.
- Li HW, Zang BS, Deng XW, Wang XP. 2011. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234: 1007-1018. https://doi.org/10.1007/s00425-011-1458-0
- Munoz-Mayor A, Pineda B, Garcia-Abellan JO, Anton T, Garcia-Sogo B, Sanchez-Bel P, et al. 2012. Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J. Plant Physiol. 169: 459-468. https://doi.org/10.1016/j.jplph.2011.11.018
- Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, et al. 2016. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol. Plant. 158: 34-44. https://doi.org/10.1111/ppl.12441
- Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Fact. 13: 66. https://doi.org/10.1186/1475-2859-13-66
- Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A. 2010. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci. Hortic. 124: 62-66. https://doi.org/10.1016/j.scienta.2009.12.012
- Fernandez O, Theocharis A, Bordiec S, Feil R, Jacquens, L Clement C, et al. 2012. Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol. Plant Microbe Interact. 25: 496-504. https://doi.org/10.1094/MPMI-09-11-0245
- Jha Y, Subramanian RB. 2014. PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol. Mol. Biol. Plants 20: 201-207. https://doi.org/10.1007/s12298-014-0224-8
- Meena RK, Singh RK, Pal Singh N, Meena SK, Meena VS. 2015. Isolation of low temperature surviving plant growth - promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal. Agric. Biotechnol. 4: 806-811. https://doi.org/10.1016/j.bcab.2015.08.006
- Glick BR. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169: 30-39. https://doi.org/10.1016/j.micres.2013.09.009
- Damodaran T, Sah V, Rai RB, Sharma DK, Mishra VK, Jha SK, et al. 2013. Isolation of salt tolerant endophytic and rhizospheric bacteria by natural selection and screening for promising plant growth-promoting rhizobacteria (PGPR) and growth vigour in tomato under sodic environment. Afr. J. Microbiol. Res. 7: 5082-5089.
- Qu L, Huang, Y, Zhu C, Zeng H, Shen C, Liu C, et al. 2015. Rhizobia-inoculation enhances the soybean's tolerance to salt stress. Plant Soil 400: 209-222. https://doi.org/10.1007/s11104-015-2728-6
- Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A. 2016. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci. Rep. 6: 34768. https://doi.org/10.1038/srep34768
- Yang J, Kloepper JW, Ryu CM. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14: 1-4. https://doi.org/10.1016/j.tplants.2008.10.004
- Sang MK, Dutta S, Park K. 2015. Influence of commercial antibiotics on biocontrol of soft rot and plant growth promotion in Chinese cabbages by Bacillus vallismortis EXTN-1 and BS07M. Res. Plant Dis. 21: 225-260.
- Polonenko DR, Mayfield CI, Dumbroff EB. 1981. Microbial responses to salt-induced osmotic stress. Plant Soil 59: 269-285. https://doi.org/10.1007/BF02184200
- Lichtenthaler HK. 1987. Chlorophyll fluorescence signatures of leaves during the autumnal chlorophyll breakdown. J. Plant Physiol. 131: 101-110. https://doi.org/10.1016/S0176-1617(87)80271-7
- Lutts S, Kinet JM, Bouharmont J. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78: 389-398. https://doi.org/10.1006/anbo.1996.0134
- Shukla PS, Agarwal PK, Jha B. 2012. Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J. Plant Growth Regul. 31: 195-206. https://doi.org/10.1007/s00344-011-9231-y
-
Iseki K, Marubodee R, Ehara H, Tomooka N. 2017. A rapid quantification method for tissue
$Na^+$ and$K^+$ concentrations in salt-tolerant and susceptible accessions in Vigna vexillata (L.) A. Rich. Plant Prod. Sci. 20: 144-148. https://doi.org/10.1080/1343943X.2016.1251826 - Bates LS, Waldren RP, Teare I. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207. https://doi.org/10.1007/BF00018060
- Yemm EW, Willis AJ. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57: 508-514. https://doi.org/10.1042/bj0570508
- Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S. 2007. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J. Exp. Bot. 58: 4245-4255. https://doi.org/10.1093/jxb/erm284
- Iovieno P, Punzo P, Guida G, Mistretta C, Van Oosten MJ, Nurcato R, et al. 2016. Transcriptomic changes drive physiological responses to progressive drought stress and rehydration in tomato. Front. Plant Sci. 7: 371.
- Lovdal T, Lillo C. 2009. Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal. Biochem. 387: 238-242. https://doi.org/10.1016/j.ab.2009.01.024
- Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
- Halo BA, Khan AL, Waqas M, Al-Harrasi A, Hussain J, Ali L, et al. 2015. Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J. Plant Interact. 10: 117-125. https://doi.org/10.1080/17429145.2015.1033659
- Chatterjee P, Samaddar S, Anandham R, Kang Y, Kim K, Selvakumar G, et al. 2017. Beneficial soil bacterium Pseudomonas frederiksbergensis OS261 augments salt tolerance and promotes red pepper plant growth. Front. Plant Sci. 8: 705. https://doi.org/10.3389/fpls.2017.00705
- Yoo SJ, Shin DJ, Weon HY, Song J, Sang MK. 2018. Selection of bacteria for enhancement of tolerance to salinity and temperature stresses in tomato plants. Korean J. Org. Agric. 26: 463-475. https://doi.org/10.11625/KJOA.2018.26.3.463
- Turan S, Tripathy BC. 2015. Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Physiol. Plant. 153: 477-491. https://doi.org/10.1111/ppl.12250
- Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, et al. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 38: 102. https://doi.org/10.1007/s11738-016-2113-y
- Amirjani MR. 2011. Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int. J. Bot. 7: 73-81. https://doi.org/10.3923/ijb.2011.73.81
- Ruiz-Sola MA, Arbona V, Gomez-Cadenas A, Rodriguez-Concepcion M, Rodriguez-Villalon A. 2014. A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in Arabidopsis. PLoS One 9: e90765. https://doi.org/10.1371/journal.pone.0090765
- Baha N, Bekki A. 2015. An approach of improving plant salt tolerance of Lucerne (Medicago sativa) grown under salt stress: use of Bio-inoculants. J. Plant Growth. Regul. 34: 169-182. https://doi.org/10.1007/s00344-014-9455-8
- Sukweenadhi J, Balusamy SR, Kim YJ, Lee CH, Kim YJ, Koh SC, et al. 2018. A growth-promoting bacteria, Paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in Panax ginseng. Front. Plant Sci. 9: 813. https://doi.org/10.3389/fpls.2018.00813
- Bajji M, Kinet JM, Lutts S. 2001. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 36: 61-70. https://doi.org/10.1023/A:1014732714549
-
Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V. 2014. Stress-induced electrolyte leakage: the role of
$K^+$ -permeable channels and involvement in programmed cell death and metabolic adjustment. J. Exp. Bot. 65: 1259-1270. https://doi.org/10.1093/jxb/eru004 - El-Esawi MA, Alaraidh IA, Alsahli AA, Alzahrani SM, Ali HM, Alayafi AA, et al. 2018. Serratia liquefaciens KM4 improves salt stress tolerance in maize by regulating redox potential, ion homeostasis, leaf gas exchange and stress-related gene expression. Int. J. Mol. Sci. 19(11): pii.3310.
- Rabhi NEH, Silini A, Cherif-Silini H, Yahiaoui B, Lekired A, Robineau M, et al. 2018. Pseudomonas knackmussii MLR6, a rhizospheric strain isolated from halophyte, enhances salt tolerance in Arabidopsis thaliana. J. Appl. Microbiol. 125: 1836-1851. https://doi.org/10.1111/jam.14082
- Sapre S, Gontia-Mishra I, Tiwari S. 2018. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol. Res. 206: 25-32. https://doi.org/10.1016/j.micres.2017.09.009
- Singh RP, Jha P, Jha PN. 2015. The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J. Plant physiol. 184: 57-67. https://doi.org/10.1016/j.jplph.2015.07.002
- Sharma S, Kulkarni J, Jha B. 2016. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front. Microbiol. 7: 1600.
- Shabala S, Shabala S, Cuin TA, Pang J, Percey W, Chen Z, et al. 2010. Xylem ionic relations and salinity tolerance in barley. Plant J. 61: 839-853. https://doi.org/10.1111/j.1365-313X.2009.04110.x
- Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, et al. 2007. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19: 1415-1431. https://doi.org/10.1105/tpc.106.042291
- Ranty B, Aldon D, Cotelle V, Galaud JP, Thuleau P, Mazars C. 2016. Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front. Plant Sci. 7: 327.
- Nayyar H. 2003. Variation in osmoregulation in differentially drought-sensitive wheat genotypes involves calcium. Biol. Plant. 47: 541-547. https://doi.org/10.1023/B:BIOP.0000041059.10703.11
- Huang Z, Zhao L, Chen D, Liang M, Liu Z, Shao H, et al. 2013. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS One 8: e62085. https://doi.org/10.1371/journal.pone.0062085
- Reddy PS, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR, Varshney RK, et al. 2015. Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol. Biochem. 94: 104-113. https://doi.org/10.1016/j.plaphy.2015.05.014
- Li H, Lei P, Pang X, Li S, Xu H, Xu Z, et al. 2017. Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4. Appl. Soil Ecol. 119: 26-34. https://doi.org/10.1016/j.apsoil.2017.05.033
- Upadhyay SK, Singh JS, Saxena AK, Singh DP. 2012. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol. 14: 605-611. https://doi.org/10.1111/j.1438-8677.2011.00533.x
- Kerepesi I, Galiba G. 2000. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop. Sci. 40: 482-487. https://doi.org/10.2135/cropsci2000.402482x
- Singh RP, Jha PN. 2016. A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front. Plant Sci. 7: 1890.
- Das K and Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2.
- Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
- Hussain S, Khaliq A, Matloob A, Wahid MA, Afzal I. 2013. Germination and growth response of three wheat cultivars to NaCl salinity. Soil Environ. 32: 36-43.
- Azevedo-Neto AD, Prisco JT, Eneas-Filho J, de Abreu CEB, Gomes-Filho E. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56: 87-94. https://doi.org/10.1016/j.envexpbot.2005.01.008
- Islam F, Yasmeen T, Arif MS, Ali S, Ali B, Hameed S, et al. 2016. Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul. 80: 23-36. https://doi.org/10.1007/s10725-015-0142-y
- Akram MS, Shahid M, Tariq M, Azeem M, Javed MT, Saleem S, et al. 2016. Deciphering Staphylococcus sciuri SAT-17 mediated anti-oxidative defense mechanisms and growth modulations in salt stressed maize (Zea mays L.). Front. Microbiol. 7: 867.
-
Shi H, Zhu JK. 2002. Regulation of expression of the vacuolar
$Na^+/H^+$ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol. Biol. 50: 543-550. https://doi.org/10.1023/A:1019859319617 - Saavedra X, Modrego A, Rodriguez D, Gonzalez-Garcia MP, Sanz L, Nicolas G, et al. 2010. The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress. Plant Physiol. 152: 133-150. https://doi.org/10.1104/pp.109.146381
- Gomez-Cadenas A, Arbona V, Jacas J, Primo-Millo E, Talon M. 2003. Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J. Plant Growth Regul. 21: 234-240. https://doi.org/10.1007/s00344-002-0013-4
- Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K. 2006. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 281: 5310-5318. https://doi.org/10.1074/jbc.M509820200
- Naz R, Bano A. 2015. Molecular and physiological responses of sunflower (Helianthus annuus L.) to PGPR and SA under salt stress. Pak. J. Bot. 47: 35-42.
- Zhou C, Zhu L, Xie,Y, Li F, Xiao X, Ma Z, et al. 2017. Bacillus licheniformis SA03 confers increased saline-alkaline tolerance in chrysanthemum plants by induction of abscisic acid accumulation. Front. Plant Sci. 8: 1143. https://doi.org/10.3389/fpls.2017.01143
- Sun L, Sun Y, Zhang M, Wang L, Ren J, Cui M, et al. 2012. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiol. 158: 283-298. https://doi.org/10.1104/pp.111.186866
- Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. 2000. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol. 123: 553-562. https://doi.org/10.1104/pp.123.2.553
- Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, et al. 2000. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J. 23: 363-374. https://doi.org/10.1046/j.1365-313x.2000.00789.x
- Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA 97: 11632-11637. https://doi.org/10.1073/pnas.190309197
- Yanez M, Caceres S, Orellana S, Bastias A, Verdugo I, Ruiz-Lara S, et al. 2009. An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Rep. 28: 1497-1507. https://doi.org/10.1007/s00299-009-0749-4
- Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya, Tsai YC, Chan MT. 2010. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231: 1459-1473. https://doi.org/10.1007/s00425-010-1147-4
- Orellana S, Yanez M, Espinoza A, Verdugo I, Gonzalez E, Ruiz-Lara S, et al. 2010. The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant cell Environ. 33: 2191-2208. https://doi.org/10.1111/j.1365-3040.2010.02220.x
Cited by
- Microbiological Insights into the Stress-Alleviating Property of an Endophytic Bacillus altitudinis WR10 in Wheat under Low-Phosphorus and High-Salinity Stresses vol.7, pp.11, 2019, https://doi.org/10.3390/microorganisms7110508
- 토마토에 염류 내성을 유도하는 바실러스 균주 처리 후 근권 미생물 군집 구조 연구 vol.40, pp.1, 2019, https://doi.org/10.5338/kjea.2021.40.1.6
- Alleviation of Salt Stress in Wheat Seedlings via Multifunctional Bacillus aryabhattai PM34: An In-Vitro Study vol.13, pp.14, 2019, https://doi.org/10.3390/su13148030
- Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Their Synergistic Interactions to Counteract the Negative Effects of Saline Soil on Agriculture: Key Macromolecules and Mechanism vol.9, pp.7, 2021, https://doi.org/10.3390/microorganisms9071491
- Effects of Abiotic Stress on Soil Microbiome vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22169036
- Understanding the potential of root microbiome influencing salt‐tolerance in plants and mechanisms involved at the transcriptional and translational level vol.173, pp.4, 2019, https://doi.org/10.1111/ppl.13570
- Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress vol.37, pp.6, 2019, https://doi.org/10.5423/ppj.ft.10.2021.0156
- Combined application of H2S and a plant growth promoting strain JIL321 regulates photosynthetic efficacy, soil enzyme activity and growth-promotion in rice under salt stress vol.256, 2022, https://doi.org/10.1016/j.micres.2021.126943