DOI QR코드

DOI QR Code

Optimized Production of Poly(γ-Glutamic acid) By Bacillus sp. FBL-2 through Response Surface Methodology Using Central Composite Design

  • Received : 2019.04.09
  • Accepted : 2019.06.18
  • Published : 2019.07.28

Abstract

In the present study, the optimization of poly(${\gamma}$-glutamic acid) (${\gamma}$-PGA) production by Bacillus sp. FBL-2 was studied using a statistical approach. One-factor-at-a-time method was used to investigate the effect of carbon sources and nitrogen sources on ${\gamma}$-PGA production and was utilized to select the most significant nutrients affecting the yield of ${\gamma}$-PGA. After identifying effective nutrients, response surface methodology with central composite design (CCD) was used to obtain a mathematical model to identify the optimum concentrations of the key nutrients (sucrose, $\text\tiny{L}$-glutamic acid, yeast extract, and citric acid) for improvement of ${\gamma}$-PGA production. The optimum amount of significant medium components appeared to be sucrose 51.73 g/l, $\text\tiny{L}$-glutamic acid 105.30 g/l, yeast extract 13.25 g/l, and citric acid 10.04 g/l. The optimized medium was validated experimentally, and ${\gamma}$-PGA production increased significantly from 3.59 g/l (0.33 g/l/h) to 44.04 g/l (3.67 g/l/h) when strain FBL-2 was cultivated under the optimal medium developed by the statistical approach, as compared to non-optimized medium.

Keywords

References

  1. Shih IL, Van YT. 2001. The produ ction of poly($\gamma$-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 79: 207-225. https://doi.org/10.1016/S0960-8524(01)00074-8
  2. Buescher JM, Margaritis AM. 2007. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical, and food industries. Crit. Rev. Biotechnol. 27: 1-19. https://doi.org/10.1080/07388550601166458
  3. Akagi T, Baba M, Akashi M. 2007. Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: potential applications. Polymer 48: 6729-6747. https://doi.org/10.1016/j.polymer.2007.08.038
  4. Li C. 2002. Poly(${\small{L}}$-glutamic acid)-anticancer drug conjugates. Adv. Drug Deliv. Rev. 54: 695-713. https://doi.org/10.1016/S0169-409X(02)00045-5
  5. Matsuo K, Koizumi H, Akashi M, Nakagawa S, Fujita T, Yamamoto A, et al. 2011. Intranasal immunization with poly($\gamma$-glutamic acid) nanoparticles entrapping antigenic proteins can induce potent tumor immunity. J. Control. Release 152: 310-316. https://doi.org/10.1016/j.jconrel.2011.03.009
  6. Tanimoto H, Fox T, Eagles J, Satoh H, Nozava H, Okiyama A, et al. 2007. Acute effect of poly($\gamma$-glutamic acid) on calcium absorption in post-menopausal women. J. Am. Coll. Nutr. 26: 645-649. https://doi.org/10.1080/07315724.2007.10719642
  7. Shih IL, Van YT, Sau YY. 2003. Antifreeze activities of poly($\gamma$-glutamic acid) produced by Bacillus licheniformis. Biotechnol. Lett. 25: 1709-1712. https://doi.org/10.1023/A:1026042302102
  8. Bhat AR, Irorere VU, Bartlett T, Hill D, Kedia G, Morris MR, et al. 2013. Bacillus subtilis natto: a non-toxic source of poly($\gamma$-glutamic acid) that could be used as a cryoprotectant for probiotic bacteria. AMB Express 3: 36. https://doi.org/10.1186/2191-0855-3-36
  9. Lee CY, Kuo MI. 2011. Effect of $\gamma$-polyglutamate on the rheological properties and microstructure of tofu. Food Hydrocoll. 25: 1034-1040. https://doi.org/10.1016/j.foodhyd.2010.10.001
  10. Zheng H, Gao Z, Yin J, Tang X, Ji X, Huang H. 2012. Harvesting of microalgae by flocculation with poly($\gamma$-glutamic acid). Bioresour. Technol. 112: 212-220. https://doi.org/10.1016/j.biortech.2012.02.086
  11. Wang F, Zhao J, Wei X, Huo F, Li W, Hu Q, Liu H. 2014. Adsorption of rare earths (III) by calcium alginate-poly glutamic acid hybrid gels. J. Chem. Technol. Biotechnol. 89: 969-977. https://doi.org/10.1002/jctb.4186
  12. Candela T, Fouet A. 2006. Poly-gamma-glutamate in bacteria. Mol. Microbiol. 60: 1091-1098. https://doi.org/10.1111/j.1365-2958.2006.05179.x
  13. Ashiuchi M. 2010. Occurrence and biosynthetic mechanism of poly-gamma-glutamic acid, pp. 77-93. In Hamano Y (ed.), Amino-Acid Homopolymers Occurring in Nature, Springer, New York, N.Y.
  14. Birrer GA, Cromwick AM, Gross RA. 1994. $\gamma$-Poly(glutamic acid) formation by Bacillus licheniformis 9945A: physiological and biochemical studies. Int. J. Biol. Macromol. 16: 265-275. https://doi.org/10.1016/0141-8130(94)90032-9
  15. Kunioka M, Goto A. 1994. Biosynthesis of poly($\gamma$-glutamic acid) from ${\small{L}}$-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. Appl. Microbiol. Biotechnol. 40: 867-872. https://doi.org/10.1007/BF00173990
  16. Jeong JH, Kim JN, Wee YJ and Ryu HW. 2010. The statistically optimized production of poly($\gamma$-giutamic acid) by batch fermentation of a newly isolated Bacillus subtilis RKY3. Bioresour. Technol. 101: 4533-4539. https://doi.org/10.1016/j.biortech.2010.01.080
  17. Cromwick AM, Birrer GA, Gross RA. 1996. Effects of pH and aeration on $\gamma$-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol. Bioeng. 50: 222-227. https://doi.org/10.1002/(SICI)1097-0290(19960420)50:2<222::AID-BIT10>3.0.CO;2-P
  18. Jung DH, Jung S, Yun, JS, Kim JN, Wee YJ, Jang HG, et al. 2005. Influences of cultural medium component on the production of poly($\gamma$-glutamic acid) by Bacillus sp. RKY3. Biotechnol. Bioprocess Eng. 10: 289-295. https://doi.org/10.1007/BF02931844
  19. Chen X, Chen S, Sun M, Yu Z. 2005. Medium optimization by response surface methodology for poly-$\gamma$-glutamic acid produ ction u sing dairy manu re as the basis of a solid substrate. Appl. Microbiol. Biotechnol. 69: 390-396. https://doi.org/10.1007/s00253-005-1989-z
  20. Bajaj B, Lele SS, Singhal RS. 2009. A statistical approach to optimization of fermentative production of poly($\gamma$-glutamic acid) from Bacillus licheniformis NCIM 2324. Bioresour. Technol. 100: 826-832. https://doi.org/10.1016/j.biortech.2008.06.047
  21. Reddy LVA, Wee YJ, Yun JS, Ryu HW. 2008. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Bioresour. Technol. 99: 2242-2249. https://doi.org/10.1016/j.biortech.2007.05.006
  22. Shi F, Xu Z, Cen P. 2006. Efficient production of poly-$\gamma$-glutamic acid by Bacillus subtilis ZJU-7. Appl. Biochem. Biotechnol. 133: 271-281. https://doi.org/10.1385/ABAB:133:3:271
  23. Du G, Yang G, Qu Y, Chen J, Lun S. 2005. Effects of glycerol on the production of poly($\gamma$-glutamic acid) by Bacillus licheniformis. Process Biochem. 40: 2143-2147. https://doi.org/10.1016/j.procbio.2004.08.005
  24. Goto A, Kunioka M. 1992. Biosynthesis and hydrolysis of poly-($\gamma$-glutamic acid) from Bacillus subtilis IFO3335. Biosci. Biotechnol. Biochem. 56: 1031-1035. https://doi.org/10.1271/bbb.56.1031
  25. Anju AJ, Binod P, Pandey A. 2017. Production and characterization of microbial poly-$\gamma$-glutamic acid from renewable resources. Indian J. Exp. Biol. 55: 405-410.
  26. Ashiuchi M, Tani K, Soda K, Misono H. 1998. Properties of glutamate racemase from Bacillus subtilis IFO 3336 producing poly-$\gamma$-glutamate. J. Biochem. 123:1156-1163. https://doi.org/10.1093/oxfordjournals.jbchem.a022055
  27. Peng Y, Jiang B, Zhang T, Mu W, Miao M, Hua Y. 2015. High-level production of poly($\gamma$-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus. Process Biochem. 50: 329-335. https://doi.org/10.1016/j.procbio.2014.12.024
  28. Tork SE, Aly MM, Alakilli SY, Al-Seeni MN. 2015. Purification and characterization of gamma poly glutamic acid from newly Bacillus licheniformis NRC20. Int. J. Biol. Macromol. 74: 382-391. https://doi.org/10.1016/j.ijbiomac.2014.12.017
  29. Bajaj IB, Singhal RS. 2009. Enhanced production of poly ($\gamma$-glutamic acid) from Bacillus licheniformis NCIM 2324 by using metabolic precursors. Appl. Biochem. Biotechnol. 159: 133-141. https://doi.org/10.1007/s12010-008-8427-5
  30. Soliman NA, Berekaa MM, Abdel-Fattah YR. 2005. Polyglutamic acid (PGA) production by Bacillus sp. SAB-26: application of Plackett-Burman experimental design to evaluate culture requirements. Appl. Microbiol. Biotechnol. 69: 259-267. https://doi.org/10.1007/s00253-005-1982-6
  31. Cao M, Geng W, Liu L, Song C, Xie H, Guo W, et al. 2011. Glutamic acid independent production of poly-$\gamma$-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresour. Technol. 102: 4251-4257. https://doi.org/10.1016/j.biortech.2010.12.065
  32. Feng J, Shi Q, Zhou G, Wang L, Chen A, Xie X, et al. 2017. Improved production of poly-$\gamma$-glutamic acid with low molecular weight under high ferric ion concentration stress in Bacillus licheniformis ATCC 9945a. Process Biochem. 56: 30-36. https://doi.org/10.1016/j.procbio.2017.02.017
  33. Cai D, Hu S, Chen Y, Liu L, Yang S, Ma X, et al. 2018. Enhanced production of poly-$\gamma$-glutamic acid by over-expression of the global anaerobic regulator Fnr in Bacillus licheniformis WX-02. Appl. Biochem. Biotechnol. 185: 959-970.
  34. Reddy LV, Kim YM, Yun JS, Ryu HW, Wee YJ. 2016. ${\small{L}}$-Lactic acid production by combined utilization of agricultural bioresources as renewable and economical substrates through batch and repeated-batch fermentation of Enterococcus faecalis RKY1. Bioresour. Technol. 209: 187-194. https://doi.org/10.1016/j.biortech.2016.02.115

Cited by

  1. Purification of Ethyl Linoleate from Foxtail Millet (Setaria italica) Bran Oil via Urea Complexation and Molecular Distillation vol.10, pp.8, 2019, https://doi.org/10.3390/foods10081925
  2. Poly-γ-glutamic acid: Recent achievements, diverse applications and future perspectives vol.119, 2022, https://doi.org/10.1016/j.tifs.2021.11.009