DOI QR코드

DOI QR Code

Programmed Cell Death in Bacterial Community: Mechanisms of Action, Causes and Consequences

  • Lee, Heejeong (School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Dong Gun (School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University)
  • Received : 2019.04.11
  • Accepted : 2019.06.11
  • Published : 2019.07.28

Abstract

In the bacterial community, unicellular organisms act together as a multicellular being. Bacteria interact within the community and programmed cell death (PCD) in prokaryotes is a sort of altruistic action that enables the whole population to thrive. Genetically, encoded cell death pathways are triggered by DNA damage or nutrient starvation. Given the environmental and bacterial diversity, different PCD mechanisms are operated. Still, their biochemical and physiological aspects remain unrevealed. There are three main pathways; thymineless death, apoptosis-like death, and toxin-antitoxin systems. The discovery of PCD in bacteria has revealed the possibility of developing new antibiotics. In this review, the molecular and physiological characteristics of the three types of PCD and their development potential as antibacterial agents are addressed.

Keywords

References

  1. Tanouchi Y, Lee AJ, Meredith H, You L. 2013. Programmed cell death in bacteria and implications for antibiotic therapy. Trends Microbiol. 21: 265-270. https://doi.org/10.1016/j.tim.2013.04.001
  2. Allocati N, Masulli M, Di Ilio C, De Laurenzi V. 2015. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 6: e1609. https://doi.org/10.1038/cddis.2014.570
  3. Bayles KW. 2014. Bacterial programmed cell death: making sense of a paradox. Nat. Rev. Microbiol. 12: 63-69. https://doi.org/10.1038/nrmicro3136
  4. Dewachter L, Verstraeten N, Fauvart M, Michiels J. 2016. The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death. Microb. Cell 3: 255-256. https://doi.org/10.15698/mic2016.06.507
  5. Andryukov BG, Somova LM, Timchenko NF. 2018. Molecular and genetic characteristics of cell death in prokaryotes. Mol. Genet. Microbiol. 33: 73-83. https://doi.org/10.3103/S0891416818020039
  6. Zheng W, Rasmussen U, Zheng S, Bao X, Chen B, Gao Y, et al. 2013. Multiple modes of cell death discovered in a prokaryotic (cyanobacterial) endosymbiont. PLoS One 8: e66147. https://doi.org/10.1371/journal.pone.0066147
  7. Nagamalleswari E, Rao S, Vasu K, Nagaraja V. 2017. Restriction endonuclease triggered bacterial apoptosis as a mechanism for long time survival. Nucleic Acids Res. 45: 8423-8434. https://doi.org/10.1093/nar/gkx576
  8. Lewis K. 2000. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64: 503-514. https://doi.org/10.1128/MMBR.64.3.503-514.2000
  9. Dewachter L, Verstraeten N, Monteyne D, Kint CI, Versees W, Perez-Morga D, et al. 2015. A single-amino-acid substitution in Obg activates a new programmed cell death pathway in Escherichia coli. MBio. 6: e01935-01915.
  10. Kohanski MA, Dwyer DJ, Collins JJ. 2010. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8: 423-435. https://doi.org/10.1038/nrmicro2333
  11. Peeters SH, de Jonge MI. 2018. For the greater good: Programmed cell death in bacterial communities. Microbiol. Res. 207: 161-169. https://doi.org/10.1016/j.micres.2017.11.016
  12. Ackermann M, Stecher B, Freed NE, Songhet P, Hardt WD, Doebeli M. 2008. Self-destructive cooperation mediated by phenotypic noise. Nature 454: 987-990. https://doi.org/10.1038/nature07067
  13. Tanouchi Y, Pai A, Buchler NE, You L. 2012. Programming stress-induced altruistic death in engineered bacteria. Mol. Syst. Biol. 8: 626. https://doi.org/10.1038/msb.2012.57
  14. Lee W, Lee DG. 2014. Magainin 2 induces bacterial cell death showing apoptotic properties. Curr. Microbiol. 69: 794-801. https://doi.org/10.1007/s00284-014-0657-x
  15. Lee B, Hwang JS, Lee DG. 2019. Induction of apoptosis-like death by periplanetasin-2 in Escherichia coli and contribution of SOS genes. Appl. Microbiol. Biotechnol. 103: 1417-1427. https://doi.org/10.1007/s00253-018-9561-9
  16. Lee H, Lee DG. 2018. Gold nanoparticles induce a reactive oxygen species-independent apoptotic pathway in Escherichia coli. Colloids Surf. B: Biointerfaces 167: 1-7. https://doi.org/10.1016/j.colsurfb.2018.03.049
  17. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB. 2010. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85: 1115-1122. https://doi.org/10.1007/s00253-009-2159-5
  18. Erental A, Kalderon Z, Saada A, Smith Y, Engelberg-Kulka H. 2014. Apoptosis-like death, an extreme SOS response in Escherichia coli. MBio 5: e01426-01414.
  19. Vercruysse M, Köhrer C, Shen Y, Proulx S, Ghosal A, Davies BW, et al. 2016. Identification of YbeY-protein interactions involved in 16S rRNA maturation and stress regulation in Escherichia coli. MBio 7: e01785-01716.
  20. Ghosal A, Köhrer C, Babu VM, Yamanaka K, Davies BW, Jacob AI, et al. 2017. C21orf57 is a human homologue of bacterial YbeY proteins. Biochem. Biophys. Res. Commun. 484: 612-617. https://doi.org/10.1016/j.bbrc.2017.01.149
  21. Lee W, Kim KJ, Lee DG. 2014. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals 27: 1191-1201. https://doi.org/10.1007/s10534-014-9782-z
  22. Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ. 2012. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol. Cell. 46: 561-572. https://doi.org/10.1016/j.molcel.2012.04.027
  23. Adikesavan AK, Katsonis P, Marciano DC, Lua R, Herman C, Lichtarge O. 2011. Separation of recombination and SOS response in Escherichia coli RecA suggests LexA interaction sites. PLoS Genet. 7(9): e1002244. https://doi.org/10.1371/journal.pgen.1002244
  24. Peng Q, Zhou SQ, Yao F, Hou B, Huang YC, Hua DX, et al. 2011. Baicalein suppresses the SOS response system of staphylococcus aureus induced by ciprofloxacin. Cell. Physiol. Biochem. 28: 1045-1050. https://doi.org/10.1159/000335791
  25. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130: 797-810. https://doi.org/10.1016/j.cell.2007.06.049
  26. Steinmann ME, Gonzalez-Salgado A, Butikofer P, Maser P, Sigel E. 2015. A heteromeric potassium channel involved in the modulation of the plasma membrane potential is essential for the survival of African trypanosomes. FASEB J. 29: 3228-3237. https://doi.org/10.1096/fj.15-271353
  27. Asplund-Samuelsson J. 2015. The art of destruction: revealing the proteolytic capacity of bacterial caspase homologs. Mol. Microbiol. 98: 1-6. https://doi.org/10.1111/mmi.13111
  28. Yun DG, Lee DG. 2016. Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli. Appl. Microbiol. Biotechnol. 100: 5505-5514. https://doi.org/10.1007/s00253-016-7415-x
  29. Lee H, Lee DG. 2019. SOS genes contribute to Bac8c induced apoptosis-like death in Escherichia coli. Biochimie 157: 195-203. https://doi.org/10.1016/j.biochi.2018.12.001
  30. Khodursky A, Guzman EC, Hanawalt PC. 2015. Thymineless death lives on: new insights into a classic phenomenon. Annu. Rev. Microbiol. 69: 247-263. https://doi.org/10.1146/annurev-micro-092412-155749
  31. Guzman EC, Martin CM. 2015. Thymineless death, at the origin. Front Microbiol. 6: 499. https://doi.org/10.3389/fmicb.2015.00499
  32. Fonville NC, Bates D, Hastings PJ, Hanawalt PC, Rosenberg SM. 2010. Role of RecA and the SOS response in thymineless death in Escherichia coli. PLoS Genet. 6: e1000865. https://doi.org/10.1371/journal.pgen.1000865
  33. Matic I. 2018. The major contribution of the DNA damage-triggered reactive oxygen species production to cell death: implications for antimicrobial and cancer therapy. Curr. Genet. 64: 567-569. https://doi.org/10.1007/s00294-017-0787-3
  34. Hamilton HM, Wilson R, Blythe M, Nehring RB, Fonville NC, Louis EJ, et al. 2013. Thymineless death is inhibited by CsrA in Escherichia coli lacking the SOS response. DNA Repair (Amst). 12: 993-999. https://doi.org/10.1016/j.dnarep.2013.08.011
  35. Hong Y, Li L, Luan G, Drlica K, Zhao X. 2017. Contribution of reactive oxygen species to thymineless death in Escherichia coli. Nat. Microbiol. 2: 1667-1675. https://doi.org/10.1038/s41564-017-0037-y
  36. Khan SR, Kuzminov A. 2019. Thymineless death in Escherichia coli is unaffected by the chromosomal replication complexity. J. Bacteriol. 00797-00718.
  37. Hastings PJ, Rosenberg SM. 2017. A radical way to die. Nat. Microbiol. 2: 1582-1583. https://doi.org/10.1038/s41564-017-0074-6
  38. Fonville NC, Vaksman Z, DeNapoli J, Hastings PJ, Rosenberg SM. 2011. Pathways of resistance to thymineless death in Escherichia coli and the function of UvrD. Genetics 189: 23-36. https://doi.org/10.1534/genetics.111.130161
  39. Morimatsu K, Kowalczykowski SC. 2014. RecQ helicase and RecJ nuclease provide complementary functions to resect DNA for homologous recombination. Proc. Natl. Acad. Sci. USA 111: E5133-5142. https://doi.org/10.1073/pnas.1420009111
  40. Ramisetty BC, Natarajan B, Santhosh RS. 2015. mazEF-mediated programmed cell death in bacteria: "what is this?". Crit. Rev. Microbiol. 41: 89-100. https://doi.org/10.3109/1040841X.2013.804030
  41. Hu MX, Zhang X, Li EL, Feng YJ. 2010. Recent advancements in toxin and antitoxin systems involved in bacterial programmed cell death. Int. J. Microbiol. 2010: 781430.
  42. Tripathi A, Dewan PC, Siddique SA, Varadarajan R. 2014. MazF-induced growth inhibition and persister generation in Escherichia coli. J. Biol. Chem. 289: 4191-4205. https://doi.org/10.1074/jbc.M113.510511
  43. Schifano JM, Cruz JW, Vvedenskaya IO, Edifor R, Ouyang M, Husson RN, et al. 2016. tRNA is a new target for cleavage by a MazF toxin. Nucleic Acids Res. 44: 1256-1270. https://doi.org/10.1093/nar/gkv1370
  44. Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H. 2007. A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318: 652-655. https://doi.org/10.1126/science.1147248
  45. Davies BW, Kohanski MA, Simmons LA, Winkler JA, Collins JJ, Walker GC. 2009. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol. Cell 36: 845-860. https://doi.org/10.1016/j.molcel.2009.11.024
  46. Erental A, Sharon I, Engelberg-Kulka H. 2012. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol. 10(3): e1001281. https://doi.org/10.1371/journal.pbio.1001281

Cited by

  1. Programmed Cell Death-Like and Accompanying Release of Microcystin in Freshwater Bloom-Forming Cyanobacterium Microcystis : From Identification to Ecological Relevance vol.11, pp.12, 2019, https://doi.org/10.3390/toxins11120706
  2. Delving Into the Functional Meaning of Phenotypic Variation in Mycobacterial Persistence: Who Benefits the Most From Programmed Death of Individual Cells? vol.13, 2020, https://doi.org/10.1177/1178636120945304
  3. Supramolecular Organization As a Factor of Ribonuclease Cytotoxicity vol.12, pp.3, 2019, https://doi.org/10.32607/actanaturae.11000
  4. Novel piperazine‐tailored ursolic acid hybrids as significant antibacterial agents targeting phytopathogens Xanthomonas oryzae pv. oryzae and X. axonopodis pv. citri probably directed by activat vol.76, pp.8, 2019, https://doi.org/10.1002/ps.5822
  5. Downregulation of T7 RNA polymerase transcription enhances pET‐based recombinant protein production in Escherichia coli BL21 (DE3) by suppressing autolysis vol.118, pp.1, 2019, https://doi.org/10.1002/bit.27558
  6. MazEF Toxin-Antitoxin System-Mediated DNA Damage Stress Response in Deinococcus radiodurans vol.12, 2021, https://doi.org/10.3389/fgene.2021.632423
  7. Assessment of the Antibacterial Mechanism of Pterostilbene against Bacillus cereus through Apoptosis-like Cell Death and Evaluation of Its Beneficial Effects on the Gut Microbiota vol.69, pp.41, 2019, https://doi.org/10.1021/acs.jafc.1c04898
  8. Contribution of SOS genes to H2O2-induced apoptosis-like death in Escherichia coli vol.67, pp.6, 2021, https://doi.org/10.1007/s00294-021-01204-0