DOI QR코드

DOI QR Code

Cellular immunotherapy in multiple myeloma

  • Vo, Manh-Cuong (Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital) ;
  • Lakshmi, Thangaraj Jaya (Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital) ;
  • Jung, Sung-Hoon (Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital) ;
  • Cho, Duck (Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Park, Hye-Seong (Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital) ;
  • Chu, Tan-Huy (Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital) ;
  • Lee, Hyun-Ju (VaxCell-Bio Therapeutics) ;
  • Kim, Hyeoung-Joon (Department of Hematology-Oncology, Chonnam National University Hwasun Hospital) ;
  • Kim, Sang-Ki (Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University) ;
  • Lee, Je-Jung (Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital)
  • Received : 2018.09.06
  • Accepted : 2018.12.04
  • Published : 2019.09.01

Abstract

In multiple myeloma (MM), the impaired function of several types of immune cells favors the tumor's escape from immune surveillance and, therefore, its growth and survival. Tremendous improvements have been made in the treatment of MM over the past decade but cellular immunotherapy using dendritic cells, natural killer cells, and genetically engineered T-cells represent a new therapeutic era. The application of these treatments is growing rapidly, based on their capacity to eradicate MM. In this review, we summarize recent progress in cellular immunotherapy for MM and its future prospects.

Keywords

Acknowledgement

This work was supported by grants (NRF-2018R1C1B5041536, 2018R1A5A2024181) from the National Research Foundation of Korea (NRF), funded by the Korea government (MSIT)

References

  1. Sirohi B, Powles R. Multiple myeloma. Lancet 2004;363:875-887. https://doi.org/10.1016/S0140-6736(04)15736-X
  2. Kyle RA, Rajkumar SV. Multiple myeloma. N Engl J Med 2004;351:1860-1873. https://doi.org/10.1056/NEJMra041875
  3. Hong J, Lee JH. Recent advances in multiple myeloma: a Korean perspective. Korean J Intern Med 2016;31:820-834. https://doi.org/10.3904/kjim.2015.408
  4. Lonial S, Cavenagh J. Emerging combination treatment strategies containing novel agents in newly diagnosed multiple myeloma. Br J Haematol 2009;145:681-708. https://doi.org/10.1111/j.1365-2141.2009.07649.x
  5. Attal M, Harousseau JL. The role of high-dose therapy with autologous stem cell support in the era of novel agents. Semin Hematol 2009;46:127-132. https://doi.org/10.1053/j.seminhematol.2009.02.006
  6. Dosani T, Carlsten M, Maric I, Landgren O. The cellular immune system in myelomagenesis: NK cells and T cells in the development of myeloma [corrected] and their uses in immunotherapies. Blood Cancer J 2015;5:e306. https://doi.org/10.1038/bcj.2015.32
  7. Leung W. Immunotherapy in acute leukemia. Semin Hematol 2009;46:89-99. https://doi.org/10.1053/j.seminhematol.2008.09.004
  8. Guillerey C, Nakamura K, Vuckovic S, Hill GR, Smyth MJ. Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies. Cell Mol Life Sci 2016;73:1569-1589. https://doi.org/10.1007/s00018-016-2135-z
  9. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell 2017;168:724-740. https://doi.org/10.1016/j.cell.2017.01.016
  10. Bensinger W, Rotta M, Storer B, et al. Allo-SCT for multiple myeloma: a review of outcomes at a single transplant center. Bone Marrow Transplant 2012;47:1312-1317. https://doi.org/10.1038/bmt.2012.1
  11. Quach H, Ritchie D, Stewart AK, Neeson P, Harrison S, Smyth MJ, et al. Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia 2010;24:22-32. https://doi.org/10.1038/leu.2009.236
  12. Vo MC, Nguyen-Pham TN, Lee HJ, et al. Combination therapy with dendritic cells and lenalidomide is an effective approach to enhance antitumor immunity in a mouse colon cancer model. Oncotarget 2017;8:27252-27262. https://doi.org/10.18632/oncotarget.15917
  13. Vo MC, Nguyen-Pham TN, Lee HJ, et al. Chaetocin enhances dendritic cell function via the induction of heat shock protein and cancer testis antigens in myeloma cells. Oncotarget 2017;8:46047-46056. https://doi.org/10.18632/oncotarget.17517
  14. Al-Hujaily EM, Oldham RA, Hari P, Medin JA. Development of novel immunotherapies for multiple myeloma. Int J Mol Sci 2016;17:E1506.
  15. Rosenblatt J, Avigan D. Targeting the PD-1/PD-L1 axis in multiple myeloma: a dream or a reality? Blood 2017;129:275-279. https://doi.org/10.1182/blood-2016-08-731885
  16. Jung SH, Lee HJ, Vo MC, Kim HJ, Lee JJ. Immunotherapy for the treatment of multiple myeloma. Crit Rev Oncol Hematol 2017;111:87-93. https://doi.org/10.1016/j.critrevonc.2017.01.011
  17. Kim YS, Park HJ, Park JH, et al. A novel function of API5 (apoptosis inhibitor 5), TLR4-dependent activation of antigen presenting cells. Oncoimmunology 2018;7:e1472187. https://doi.org/10.1080/2162402X.2018.1472187
  18. Ratta M, Fagnoni F, Curti A, et al. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 2002;100:230-237. https://doi.org/10.1182/blood.V100.1.230
  19. Vo MC, Anh-NguyenThi T, Lee HJ, et al. Lenalidomide enhances the function of dendritic cells generated from patients with multiple myeloma. Exp Hematol 2017;46:48-55. https://doi.org/10.1016/j.exphem.2016.11.004
  20. Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S, et al. Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 2000;6:621-627. https://doi.org/10.1016/S1083-8791(00)70027-9
  21. Jung SH, Lee YK, Lee HJ, et al. Dendritic cells loaded with myeloma cells pretreated with a combination of JSI-124 and bortezomib generate potent myeloma-specific cytotoxic T lymphocytes in vitro. Exp Hematol 2014;42:274-281. https://doi.org/10.1016/j.exphem.2013.12.008
  22. Choi NR, Lee HJ, Jung SH, et al. Generation of potent dendritic cells with improved migration ability through p-cofilin and sarco/endoplasmic reticulum Ca(2+) transport ATPase 2 regulation. Cytotherapy 2015;17:1421-1433. https://doi.org/10.1016/j.jcyt.2015.06.002
  23. Hoang MD, Jung SH, Lee HJ, et al. Dendritic cell-based cancer immunotherapy against multiple myeloma: from bench to clinic. Chonnam Med J 2015;51:1-7. https://doi.org/10.4068/cmj.2015.51.1.1
  24. Hoang MD, Lee HJ, Lee HJ, et al. Branched polyethylenimine-superparamagnetic iron oxide nanoparticles (bPEI-SPIONs) improve the immunogenicity of tumor antigens and enhance Th1 polarization of dendritic cells. J Immunol Res 2015;2015:706379.
  25. Hong CY, Lee HJ, Choi NR, et al. Sarcoplasmic reticulum Ca(2+) ATPase 2 (SERCA2) reduces the migratory capacity of CCL21-treated monocyte-derived dendritic cells. Exp Mol Med 2016;48:e253. https://doi.org/10.1038/emm.2016.69
  26. Lee HJ, Choi NR, Vo MC, Hoang MD, Lee YK, Lee JJ. Generation of multiple peptide cocktail-pulsed dendritic cells as a cancer vaccine. Methods Mol Biol 2014;1139:17-26. https://doi.org/10.1007/978-1-4939-0345-0_2
  27. Vo MC, Lee HJ, Kim JS, et al. Dendritic cell vaccination with a toll-like receptor agonist derived from mycobacteria enhances anti-tumor immunity. Oncotarget 2015;6:33781-33790. https://doi.org/10.18632/oncotarget.5281
  28. Jung SH, Lee HJ, Lee YK, et al. A phase I clinical study of autologous dendritic cell therapy in patients with relapsed or refractory multiple myeloma. Oncotarget 2017;8:41538-41548. https://doi.org/10.18632/oncotarget.14582
  29. Neuber B, Herth I, Tolliver C, et al. Lenalidomide enhances antigen-specific activity and decreases CD45RA expression of T cells from patients with multiple myeloma. J Immunol 2011;187:1047-1056. https://doi.org/10.4049/jimmunol.1002460
  30. Nguyen-Pham TN, Jung SH, Vo MC, et al. Lenalidomide synergistically enhances the effect of dendritic cell vaccination in a model of murine multiple myeloma. J Immunother 2015;38:330-339. https://doi.org/10.1097/CJI.0000000000000097
  31. Vo MC, Yang S, Jung SH, et al. Synergistic antimyeloma activity of dendritic cells and pomalidomide in a murine myeloma model. Front Immunol 2018;9:1798. https://doi.org/10.3389/fimmu.2018.01798
  32. Rosenblatt J, Glotzbecker B, Mills H, et al. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother 2011;34:409-418. https://doi.org/10.1097/CJI.0b013e31821ca6ce
  33. Vo MC, Jung SH, Chu TH, et al. Lenalidomide and programmed death-1 blockade synergistically enhances the effects of dendritic cell vaccination in a model of murine myeloma. Front Immunol 2018;9:1370. https://doi.org/10.3389/fimmu.2018.01370
  34. Kochenderfer JN, Rosenberg SA. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol 2013;10:267-276. https://doi.org/10.1038/nrclinonc.2013.46
  35. Ramos CA, Savoldo B, Torrano V, et al. Clinical responses with T lymphocytes targeting malignancy-associated κ light chains. J Clin Invest 2016;126:2588-2596. https://doi.org/10.1172/JCI86000
  36. Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 2015;125:4017-4023. https://doi.org/10.1182/blood-2014-12-580068
  37. Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov 2013;3:388-398. https://doi.org/10.1158/2159-8290.CD-12-0548
  38. Zhao Z, Condomines M, van der Stegen SJC, et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 2015;28:415-428. https://doi.org/10.1016/j.ccell.2015.09.004
  39. First-ever CAR T-cell therapy approved in U.S. Cancer Discov 2017;7:OF1.
  40. Mikkilineni L, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for multiple myeloma. Blood 2017;130:2594-2602. https://doi.org/10.1182/blood-2017-06-793869
  41. Mackay CR, Terpe HJ, Stauder R, Marston WL, Stark H, Gunthert U. Expression and modulation of CD44 variant isoforms in humans. J Cell Biol 1994;124:71-82. https://doi.org/10.1083/jcb.124.1.71
  42. Kawamura T, Ogawa Y, Shimozato O, et al. CD70 is selectively expressed on Th1 but not on Th2 cells and is required for Th1-type immune responses. J Invest Dermatol 2011;131:1252-1261. https://doi.org/10.1038/jid.2011.36
  43. Van Acker HH, Capsomidis A, Smits EL, Van Tendeloo VF. CD56 in the immune system: more than a marker for cytotoxicity? Front Immunol 2017;8:892. https://doi.org/10.3389/fimmu.2017.00892
  44. Drent E, Themeli M, Poels R, et al. A rational strategy for reducing on-target off-tumor effects of cd38-chimeric antigen receptors by affinity optimization. Mol Ther 2017;25:1946-1958. https://doi.org/10.1016/j.ymthe.2017.04.024
  45. Harada H, Kawano MM, Huang N, et al. Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 1993;81:2658-2663. https://doi.org/10.1182/blood.V81.10.2658.2658
  46. Podar K, Anderson KC. The evolution and maintenance of the multiple myeloma cell clone within the liquid bone marrow compartment: therapeutic implications. In: Bradshaw RA, Dennis EA, eds. Handbook of Cell Signaling (Second Edition). Burlington (VT): Academic Press, 2010:2799-2809.
  47. Guo B, Chen M, Han Q, et al. CD138-directed adoptive immunotherapy of chimeric antigen receptor (CAR)-modified T cells for multiple myeloma. J Cell Immunother 2016;2:28-35. https://doi.org/10.1016/j.jocit.2014.11.001
  48. Garfall AL, Stadtmauer EA, Hwang WT, et al. Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight 2018;3:e120505. https://doi.org/10.1172/jci.insight.120505
  49. Matsui W, Wang Q, Barber JP, et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 2008;68:190-197. https://doi.org/10.1158/0008-5472.CAN-07-3096
  50. Raje NS, Berdeja JG, Lin Y, et al. bb2121 Anti-BCMA CAR T-cell therapy in patients with relapsed/refractory multiple myeloma: updated results from a multicenter phase I study. J Clin Oncol 2018;36(15 Suppl):8007. https://doi.org/10.1200/JCO.2018.36.15_suppl.8007
  51. Cohen AD, Garfall AL, Stadtmauer EA, et al. Safety and efficacy of B-cell maturation antigen (BCMA)-specific chimeric antigen receptor T cells (CART-BCMA) with cyclophosphamide conditioning for refractory multiple myeloma (MM). Blood 2017;130(Suppl 1):505.
  52. Smith EL, Staehr M, Masakayan R, et al. Development and evaluation of an optimal human single-chain variable fragment-derived BCMA-targeted CAR T cell vector. Mol Ther 2018;26:1447-1456. https://doi.org/10.1016/j.ymthe.2018.03.016
  53. Fan F, Zhao W, Liu J, et al. Durable remissions with BC-MA-specific chimeric antigen receptor (CAR)-modified T cells in patients with refractory/relapsed multiple myeloma. J Clin Oncol 2017;35(18 Suppl):LBA3001. https://doi.org/10.1200/JCO.2017.35.18_suppl.LBA3001
  54. Yan L, Shang J, Kang L, et al. Combined infusion of CD19 and Bcma-specific chimeric antigen receptor T cells for RRMM: initial safety and efficacy report from a clinical pilot study. Blood 2017;130(Suppl 1):506.
  55. Ping Y, Liu C, Zhang Y. T-cell receptor-engineered T cells for cancer treatment: current status and future directions. Protein Cell 2018;9:254-266. https://doi.org/10.1007/s13238-016-0367-1
  56. Kunert A, Straetemans T, Govers C, et al. TCR-engineered T cells meet new challenges to treat solid tumors: choice of antigen, T cell fitness, and sensitization of tumor milieu. Front Immunol 2013;4:363.
  57. Debets R, Donnadieu E, Chouaib S, Coukos G. TCR-engineered T cells to treat tumors: seeing but not touching? Semin Immunol 2016;28:10-21. https://doi.org/10.1016/j.smim.2016.03.002
  58. Rapoport AP, Stadtmauer EA, Binder-Scholl GK, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 2015;21:914-921. https://doi.org/10.1038/nm.3910
  59. Malhotra A, Shanker A. NK cells: immune cross-talk and therapeutic implications. Immunotherapy 2011;3:1143-1166. https://doi.org/10.2217/imt.11.102
  60. Rezvani K, Rouce RH. The application of natural killer cell immunotherapy for the treatment of cancer. Front Immunol 2015;6:578.
  61. Marcus A, Gowen BG, Thompson TW, et al. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol 2014;122:91-128. https://doi.org/10.1016/B978-0-12-800267-4.00003-1
  62. Tamura H. Immunopathogenesis and immunotherapy of multiple myeloma. Int J Hematol 2018;107:278-285. https://doi.org/10.1007/s12185-018-2405-7
  63. Frohn C, Hoppner M, Schlenke P, Kirchner H, Koritke P, Luhm J. Anti-myeloma activity of natural killer lymphocytes. Br J Haematol 2002;119:660-664. https://doi.org/10.1046/j.1365-2141.2002.03879.x
  64. Garg TK, Szmania SM, Khan JA, et al. Highly activated and expanded natural killer cells for multiple myeloma immunotherapy. Haematologica 2012;97:1348-1356. https://doi.org/10.3324/haematol.2011.056747
  65. Shah N, Martin-Antonio B, Yang H, et al. Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity. PLoS One 2013;8:e76781. https://doi.org/10.1371/journal.pone.0076781
  66. Szmania S, Lapteva N, Garg T, et al. Ex vivo-expanded natural killer cells demonstrate robust proliferation in vivo in high-risk relapsed multiple myeloma patients. J Immunother 2015;38:24-36. https://doi.org/10.1097/CJI.0000000000000059
  67. Shah N, Li L, McCarty J, et al. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br J Haematol 2017;177:457-466. https://doi.org/10.1111/bjh.14570
  68. Leivas A, Perez-Martinez A, Blanchard MJ, et al. Novel treatment strategy with autologous activated and expanded natural killer cells plus anti-myeloma drugs for multiple myeloma. Oncoimmunology 2016;5:e1250051. https://doi.org/10.1080/2162402X.2016.1250051
  69. Chu J, Deng Y, Benson DM, et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia 2014;28:917-927. https://doi.org/10.1038/leu.2013.279
  70. Liu D, Tian S, Zhang K, et al. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV. Protein Cell 2017;8:861-877. https://doi.org/10.1007/s13238-017-0415-5
  71. Glienke W, Esser R, Priesner C, et al. Advantages and applications of CAR-expressing natural killer cells. Front Pharmacol 2015;6:21.
  72. von Strandmann EP, Hansen HP, Reiners KS, et al. A novel bispecific protein (ULBP2-BB4) targeting the NKG2D receptor on natural killer (NK) cells and CD138 activates NK cells and has potent antitumor activity against human multiple myeloma in vitro and in vivo. Blood 2006;107:1955-1962. https://doi.org/10.1182/blood-2005-05-2177

Cited by

  1. Proteomics-Based Approach Reveals the Involvement of SERPINB9 in Recurrent and Relapsed Multiple Myeloma vol.20, pp.5, 2019, https://doi.org/10.1021/acs.jproteome.1c00007