DOI QR코드

DOI QR Code

Extracellular vesicles in renal physiology and clinical applications for renal disease

  • Kwon, Soon Hyo (Division of Nephrology, Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital)
  • Received : 2019.04.02
  • Accepted : 2019.04.13
  • Published : 2019.05.01

Abstract

Many cells in the nephron release extracellular vesicles (EVs). EVs envelop nucleic acids, proteins, and lipids. The surfaces of EVs express donor cell-specific markers, ligands, and major histocompatibility complex molecules. They are involved in cell-to-cell communication, immune modulation, and the removal of unwanted materials from cells. EVs have been studied as biomarkers of specific diseases and have potential therapeutic applications. Recent research has emphasized the functions of EVs in the kidney. This review provides an overview of recent findings related to the roles of EVs in the nephron, and their utility as biomarkers and therapeutic factors in renal disease.

Keywords

Acknowledgement

This research was partially supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A3B03029800) and the Soonchunhyang University Research Fund.

References

  1. Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S. Focus on extracellular vesicles: physiological role and signalling properties of extracellular membrane vesicles. Int J Mol Sci 2016;17:171. https://doi.org/10.3390/ijms17020171
  2. Baranyai T, Herczeg K, Onodi Z, et al. Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One 2015;10:e0145686. https://doi.org/10.1371/journal.pone.0145686
  3. van der Pol E, Boing AN, Gool EL, Nieuwland R. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J Thromb Haemost 2016;14:48-56. https://doi.org/10.1111/jth.13190
  4. Trams EG, Lauter CJ, Salem N Jr, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 1981;645:63-70. https://doi.org/10.1016/0005-2736(81)90512-5
  5. Holme PA, Solum NO, Brosstad F, Roger M, Abdelnoor M. Demonstration of platelet-derived microvesicles in blood from patients with activated coagulation and fibrinolysis using a filtration technique and western blotting. Thromb Haemost 1994;72:666-671. https://doi.org/10.1055/s-0038-1648939
  6. Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA. Ectosomes released by human neutrophils are specialized functional units. J Immunol 1999;163:4564-4573.
  7. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013;200:373-383. https://doi.org/10.1083/jcb.201211138
  8. Janas T, Janas MM, Sapon K, Janas T. Mechanisms of RNA loading into exosomes. FEBS Lett 2015;589:1391-1398. https://doi.org/10.1016/j.febslet.2015.04.036
  9. Park SJ, Kim JM, Kim J, et al. Molecular mechanisms of biogenesis of apoptotic exosome-like vesicles and their roles as damage-associated molecular patterns. Proc Natl Acad Sci U S A 2018;115:E11721-E11730. https://doi.org/10.1073/pnas.1811432115
  10. Zhou H, Pisitkun T, Aponte A, et al. Exosomal fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int 2006;70:1847-1857. https://doi.org/10.1038/sj.ki.5001874
  11. Kalra H, Simpson RJ, Ji H, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 2012;10:e1001450. https://doi.org/10.1371/journal.pbio.1001450
  12. Kim DK, Lee J, Kim SR, et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics 2015;31:933-939. https://doi.org/10.1093/bioinformatics/btu741
  13. Lancaster GI, Febbraio MA. Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 2005;280:23349-23355. https://doi.org/10.1074/jbc.M502017200
  14. Eldh M, Ekstrom K, Valadi H, et al. Exosomes communicate protective messages during oxidative stress: possible role of exosomal shuttle RNA. PLoS One 2010;5:e15353. https://doi.org/10.1371/journal.pone.0015353
  15. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 2010;107:6328-6333. https://doi.org/10.1073/pnas.0914843107
  16. de Jong OG, Verhaar MC, Chen Y, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 2012;1:18396. https://doi.org/10.3402/jev.v1i0.18396
  17. Hristov M, Erl W, Linder S, Weber PC. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 2004;104:2761-2766. https://doi.org/10.1182/blood-2003-10-3614
  18. Rak J, Guha A. Extracellular vesicles: vehicles that spread cancer genes. Bioessays 2012;34:489-497. https://doi.org/10.1002/bies.201100169
  19. Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, Tetta C. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 2011;1:98-110.
  20. Al-Nedawi K, Meehan B, Micallef J, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008;10:619-624. https://doi.org/10.1038/ncb1725
  21. Boukouris S, Mathivanan S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin Appl 2015;9:358-367. https://doi.org/10.1002/prca.201400114
  22. Jeyaram A, Jay SM. Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J 2017;20:1. https://doi.org/10.1208/s12248-017-0160-y
  23. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011;2:282. https://doi.org/10.1038/ncomms1285
  24. Wang X, Thompson CD, Weidenmaier C, Lee JC. Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat Commun 2018;9:1379. https://doi.org/10.1038/s41467-018-03847-z
  25. Mentkowski KI, Snitzer JD, Rusnak S, Lang JK. Therapeutic potential of engineered extracellular vesicles. AAPS J 2018;20:50. https://doi.org/10.1208/s12248-018-0211-z
  26. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007;9:654-659. https://doi.org/10.1038/ncb1596
  27. Ichii O, Otsuka-Kanazawa S, Horino T, et al. Decreased miR-26a expression correlates with the progression of podocyte injury in autoimmune glomerulonephritis. PLoS One 2014;9:e110383. https://doi.org/10.1371/journal.pone.0110383
  28. Kwon SH, Tang H, Saad A, et al. Differential expression of microRNAs in urinary extracellular vesicles obtained from hypertensive patients. Am J Kidney Dis 2016;68:331-332. https://doi.org/10.1053/j.ajkd.2016.01.027
  29. Kwon SH, Woollard JR, Saad A, et al. Elevated urinary podocyte-derived extracellular microvesicles in renovascular hypertensive patients. Nephrol Dial Transplant 2017;32:800-807.
  30. Hogan MC, Manganelli L, Woollard JR, et al. Characterization of PKD protein-positive exosome-like vesicles. J Am Soc Nephrol 2009;20:278-288. https://doi.org/10.1681/ASN.2008060564
  31. Gildea JJ, Seaton JE, Victor KG, et al. Exosomal transfer from human renal proximal tubule cells to distal tubule and collecting duct cells. Clin Biochem 2014;47:89-94. https://doi.org/10.1016/j.clinbiochem.2014.06.018
  32. Kriz W, Shirato I, Nagata M, LeHir M, Lemley KV. The podocyte's response to stress: the enigma of foot process effacement. Am J Physiol Renal Physiol 2013;304:F333-F347. https://doi.org/10.1152/ajprenal.00478.2012
  33. Min SY, Ha DS, Ha TS. Puromycin aminonucleoside triggers apoptosis in podocytes by inducing endoplasmic reticulum stress. Kidney Res Clin Pract 2018;37:210-221. https://doi.org/10.23876/j.krcp.2018.37.3.210
  34. Burger D, Thibodeau JF, Holterman CE, Burns KD, Touyz RM, Kennedy CR. Urinary podocyte microparticles identify prealbuminuric diabetic glomerular injury. J Am Soc Nephrol 2014;25:1401-1407. https://doi.org/10.1681/ASN.2013070763
  35. Munkonda MN, Akbari S, Landry C, et al. Podocyte-derived microparticles promote proximal tubule fibrotic signaling via p38 MAPK and CD36. J Extracell Vesicles 2018;7:1432206. https://doi.org/10.1080/20013078.2018.1432206
  36. Wu X, Gao Y, Xu L, et al. Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial-mesenchymal transition and dysfunction of podocytes. Sci Rep 2017;7:9371. https://doi.org/10.1038/s41598-017-09907-6
  37. Jella KK, Yu L, Yue Q, Friedman D, Duke BJ, Alli AA. Exosomal GAPDH from proximal tubule cells regulate ENaC activity. PLoS One 2016;11:e0165763. https://doi.org/10.1371/journal.pone.0165763
  38. Street JM, Birkhoff W, Menzies RI, Webb DJ, Bailey MA, Dear JW. Exosomal transmission of functional aquaporin 2 in kidney cortical collecting duct cells. J Physiol 2011;589:6119-6127. https://doi.org/10.1113/jphysiol.2011.220277
  39. Smeets B, Boor P, Dijkman H, et al. Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J Pathol 2013;229:645-659. https://doi.org/10.1002/path.4125
  40. Chiabotto G, Bruno S, Collino F, Camussi G. Mesenchymal stromal cells epithelial transition induced by renal tubular cells-derived extracellular vesicles. PLoS One 2016;11:e0159163. https://doi.org/10.1371/journal.pone.0159163
  41. Zou X, Kwon SH, Jiang K, et al. Renal scattered tubular-like cells confer protective effects in the stenotic murine kidney mediated by release of extracellular vesicles. Sci Rep 2018;8:1263. https://doi.org/10.1038/s41598-018-19750-y
  42. Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm (Vienna) 2010;117:1-4. https://doi.org/10.1007/s00702-009-0288-8
  43. Bolignano D, Mattace-Raso F, Sijbrands EJ, Zoccali C. The aging kidney revisited: a systematic review. Ageing Res Rev 2014;14:65-80. https://doi.org/10.1016/j.arr.2014.02.003
  44. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987;262:9412-9420. https://doi.org/10.1016/S0021-9258(18)48095-7
  45. Guo BB, Bellingham SA, Hill AF. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem 2015;290:3455-3467. https://doi.org/10.1074/jbc.M114.605253
  46. Takahashi A, Okada R, Nagao K, et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun 2017;8:15287. https://doi.org/10.1038/ncomms15287
  47. Baixauli F, Lopez-Otin C, Mittelbrunn M. Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol 2014;5:403.
  48. Hiemstra TF, Charles PD, Gracia T, et al. Human urinary exosomes as innate immune effectors. J Am Soc Nephrol 2014;25:2017-2027. https://doi.org/10.1681/ASN.2013101066
  49. Kesimer M, Scull M, Brighton B, et al. Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J 2009;23:1858-1868. https://doi.org/10.1096/fj.08-119131
  50. Creasey AA, Chang AC, Feigen L, Wun TC, Taylor FB Jr, Hinshaw LB. Tissue factor pathway inhibitor reduces mortality from Escherichia coli septic shock. J Clin Invest 1993;91:2850-2860. https://doi.org/10.1172/JCI116529
  51. Woei-A-Jin FJ, van der Starre WE, Tesselaar ME, et al. Procoagulant tissue factor activity on microparticles is associated with disease severity and bacteremia in febrile urinary tract infections. Thromb Res 2014;133:799-803. https://doi.org/10.1016/j.thromres.2014.03.007
  52. Segura E, Nicco C, Lombard B, et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 2005;106:216-223. https://doi.org/10.1182/blood-2005-01-0220
  53. Montecalvo A, Shufesky WJ, Stolz DB, et al. Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol 2008;180:3081-3090. https://doi.org/10.4049/jimmunol.180.5.3081
  54. Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 2012;119:756-766. https://doi.org/10.1182/blood-2011-02-338004
  55. Dieude M, Bell C, Turgeon J, et al. The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection. Sci Transl Med 2015;7:318ra200. https://doi.org/10.1126/scitranslmed.aac9816
  56. Miranda KC, Bond DT, McKee M, et al. Nucleic acids within urinary exosomes/microvesicles are potential bio-markers for renal disease. Kidney Int 2010;78:191-199. https://doi.org/10.1038/ki.2010.106
  57. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 2004;101:13368-13373. https://doi.org/10.1073/pnas.0403453101
  58. Cheng Y, Wang X, Yang J, et al. A translational study of urine miRNAs in acute myocardial infarction. J Mol Cell Cardiol 2012;53:668-676. https://doi.org/10.1016/j.yjmcc.2012.08.010
  59. Prabu P, Rome S, Sathishkumar C, et al. MicroRNAs from urinary extracellular vesicles are non-invasive early bio-markers of diabetic nephropathy in type 2 diabetes patients with the 'Asian Indian phenotype'. Diabetes Metab 2018 Aug 27 [Epub]. https://doi.org/10.1016/j.diabet.2018.08.004.
  60. Delic D, Eisele C, Schmid R, et al. Urinary exosomal miRNA signature in type II diabetic nephropathy patients. PLoS One 2016;11:e0150154. https://doi.org/10.1371/journal.pone.0150154
  61. Kaminska A, Platt M, Kasprzyk J, et al. Urinary extracellular vesicles: potential biomarkers of renal function in diabetic patients. J Diabetes Res 2016;2016:5741518.
  62. Kalani A, Mohan A, Godbole MM, et al. Wilm's tumor-1 protein levels in urinary exosomes from diabetic patients with or without proteinuria. PLoS One 2013;8:e60177. https://doi.org/10.1371/journal.pone.0060177
  63. Moon PG, Lee JE, You S, et al. Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics 2011;11:2459-2475. https://doi.org/10.1002/pmic.201000443
  64. Feng Y, Lv LL, Wu WJ, et al. Urinary exosomes and exosomal CCL2 mRNA as biomarkers of active histologic injury in IgA nephropathy. Am J Pathol 2018;188:2542-2552. https://doi.org/10.1016/j.ajpath.2018.07.017
  65. Zhou H, Kajiyama H, Tsuji T, et al. Urinary exosomal Wilms' tumor-1 as a potential biomarker for podocyte injury. Am J Physiol Renal Physiol 2013;305:F553-F559. https://doi.org/10.1152/ajprenal.00056.2013
  66. Huang Z, Zhang Y, Zhou J, Zhang Y. Urinary exosomal miR-193a can be a potential biomarker for the diagnosis of primary focal segmental glomerulosclerosis in children. Biomed Res Int 2017;2017:7298160.
  67. Hogan MC, Bakeberg JL, Gainullin VG, et al. Identification of biomarkers for PKD1 using urinary exosomes. J Am Soc Nephrol 2015;26:1661-1670. https://doi.org/10.1681/ASN.2014040354
  68. Pocsfalvi G, Raj DA, Fiume I, Vilasi A, Trepiccione F, Capasso G. Urinary extracellular vesicles as reservoirs of altered proteins during the pathogenesis of polycystic kidney disease. Proteomics Clin Appl 2015;9:552-567. https://doi.org/10.1002/prca.201400199
  69. Zhou H, Cheruvanky A, Hu X, et al. Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney Int 2008;74:613-621. https://doi.org/10.1038/ki.2008.206
  70. Alvarez S, Suazo C, Boltansky A, et al. Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation. Transplant Proc 2013;45:3719-3723. https://doi.org/10.1016/j.transproceed.2013.08.079
  71. Zhang H, Huang E, Kahwaji J, et al. Plasma exosomes from HLA-sensitized kidney transplant recipients contain mRNA transcripts which predict development of antibody-mediated rejection. Transplantation 2017;101:2419-2428. https://doi.org/10.1097/TP.0000000000001834
  72. Park J, Lin HY, Assaker JP, et al. Integrated kidney exosome analysis for the detection of kidney transplant rejection. ACS Nano 2017;11:11041-11046. https://doi.org/10.1021/acsnano.7b05083
  73. Kim MH, Lee YH, Seo JW, et al. Urinary exosomal viral microRNA as a marker of BK virus nephropathy in kidney transplant recipients. PLoS One 2017;12:e0190068. https://doi.org/10.1371/journal.pone.0190068
  74. Qu L, Ding J, Chen C, et al. Exosome-transmitted ln-cARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 2016;29:653-668. https://doi.org/10.1016/j.ccell.2016.03.004
  75. De Palma G, Sallustio F, Curci C, et al. The three-gene signature in urinary extracellular vesicles from patients with clear cell renal cell carcinoma. J Cancer 2016;7:1960-1967. https://doi.org/10.7150/jca.16123
  76. Raimondo F, Morosi L, Corbetta S, et al. Differential protein profiling of renal cell carcinoma urinary exosomes. Mol Biosyst 2013;9:1220-1233. https://doi.org/10.1039/c3mb25582d
  77. Ding M, Wang C, Lu X, et al. Comparison of commercial exosome isolation kits for circulating exosomal microRNA profiling. Anal Bioanal Chem 2018;410:3805-3814. https://doi.org/10.1007/s00216-018-1052-4
  78. Gheinani AH, Vogeli M, Baumgartner U, et al. Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci Rep 2018;8:3945. https://doi.org/10.1038/s41598-018-22142-x
  79. Bae YU, Kim Y, Lee H, et al. Bariatric surgery alters microRNA content of circulating exosomes in patients with obesity. Obesity (Silver Spring) 2019;27:264-271. https://doi.org/10.1002/oby.22379
  80. Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ. Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest 2016;126:1152-1162. https://doi.org/10.1172/JCI81129
  81. Merchant ML, Rood IM, Deegens JKJ, Klein JB. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol 2017;13:731-749.
  82. Squadrito ML, Baer C, Burdet F, et al. Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 2014;8:1432-1446. https://doi.org/10.1016/j.celrep.2014.07.035
  83. Alexander M, Hu R, Runtsch MC, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun 2015;6:7321. https://doi.org/10.1038/ncomms8321
  84. Hong CS, Muller L, Boyiadzis M, Whiteside TL. Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia. PLoS One 2014;9:e103310. https://doi.org/10.1371/journal.pone.0103310
  85. Hubal MJ, Nadler EP, Ferrante SC, et al. Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity (Silver Spring) 2017;25:102-110. https://doi.org/10.1002/oby.21709
  86. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 2016;33:2373-2387. https://doi.org/10.1007/s11095-016-1958-5
  87. Zhang Y, Liu D, Chen X, et al. Secreted monocytic miR150 enhances targeted endothelial cell migration. Mol Cell 2010;39:133-144. https://doi.org/10.1016/j.molcel.2010.06.010
  88. Lv LL, Wu WJ, Feng Y, Li ZL, Tang TT, Liu BC. Therapeutic application of extracellular vesicles in kidney disease: promises and challenges. J Cell Mol Med 2018;22:728-737.
  89. Grange C, Tapparo M, Bruno S, et al. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int J Mol Med 2014;33:1055-1063. https://doi.org/10.3892/ijmm.2014.1663
  90. Nassar W, El-Ansary M, Sabry D, et al. Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater Res 2016;20:21. https://doi.org/10.1186/s40824-016-0068-0
  91. Kim JS, Lee JH, Kwon O, et al. Rapid deterioration of preexisting renal insufficiency after autologous mesenchymal stem cell therapy. Kidney Res Clin Pract 2017;36:200-204. https://doi.org/10.23876/j.krcp.2017.36.2.200
  92. Sodar BW, Kittel A, Paloczi K, et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep 2016;6:24316. https://doi.org/10.1038/srep24316
  93. Wiklander OP, Nordin JZ, O'Loughlin A, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 2015;4:26316. https://doi.org/10.3402/jev.v4.26316
  94. Lener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials: an ISEV position paper. J Extracell Vesicles 2015;4:30087. https://doi.org/10.3402/jev.v4.30087
  95. Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol 2005;17:879-887. https://doi.org/10.1093/intimm/dxh267
  96. Kim SM, Kim HS. Engineering of extracellular vesicles as drug delivery vehicles. Stem Cell Investig 2017;4:74. https://doi.org/10.21037/sci.2017.08.07
  97. Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release 2015;205:35-44. https://doi.org/10.1016/j.jconrel.2014.11.029
  98. Kato M. Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease. Kidney Res Clin Pract 2018;37:197-209. https://doi.org/10.23876/j.krcp.2018.37.3.197
  99. Didiot MC, Hall LM, Coles AH, et al. Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing. Mol Ther 2016;24:1836-1847. https://doi.org/10.1038/mt.2016.126
  100. Lamichhane TN, Jeyaram A, Patel DB, et al. Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell Mol Bioeng 2016;9:315-324. https://doi.org/10.1007/s12195-016-0457-4
  101. Stremersch S, Vandenbroucke RE, Van Wonterghem E, Hendrix A, De Smedt SC, Raemdonck K. Comparing exosome-like vesicles with liposomes for the functional cellular delivery of small RNAs. J Control Release 2016;232:51-61. https://doi.org/10.1016/j.jconrel.2016.04.005
  102. Pascucci L, Cocce V, Bonomi A, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release 2014;192:262-270. https://doi.org/10.1016/j.jconrel.2014.07.042
  103. Wang B, Yao K, Huuskes BM, et al. Mesenchymal stem cells deliver exogenous MicroRNA-let7c via exosomes to attenuate renal fibrosis. Mol Ther 2016;24:1290-1301. https://doi.org/10.1038/mt.2016.90

Cited by

  1. microRNA-155 Is Decreased During Atherosclerosis Regression and Is Increased in Urinary Extracellular Vesicles During Atherosclerosis Progression vol.11, 2020, https://doi.org/10.3389/fimmu.2020.576516
  2. Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers vol.21, pp.7, 2019, https://doi.org/10.3390/ijms21072514
  3. Extracellular vesicles in kidneys and their clinical potential in renal diseases vol.40, pp.2, 2019, https://doi.org/10.23876/j.krcp.20.209
  4. Current advances of stem cell-based therapy for kidney diseases vol.13, pp.7, 2021, https://doi.org/10.4252/wjsc.v13.i7.914
  5. Urinary exosomal microRNA profiling in type 2 diabetes patients taking dipeptidyl peptidase-4 inhibitor compared with sulfonylurea vol.40, pp.3, 2021, https://doi.org/10.23876/j.krcp.21.015
  6. Racial Health Disparity and COVID-19 vol.16, pp.4, 2019, https://doi.org/10.1007/s11481-021-10014-7
  7. Extracellular vesicles derived from mesenchymal stem cells as a potential therapeutic agent in acute kidney injury (AKI) in felines: review and perspectives vol.12, pp.1, 2019, https://doi.org/10.1186/s13287-021-02573-6
  8. Raman spectroscopy of urinary extracellular vesicles to stratify patients with chronic kidney disease in type 2 diabetes vol.39, 2019, https://doi.org/10.1016/j.nano.2021.102468