DOI QR코드

DOI QR Code

Effect of no-tillage and green manure practices on the nitrous oxide emission from cropland

농경지에서 무경운 및 녹비 투입에 따른 아산화질소 배출특성

  • Lee, Sun-Il (National Institute of Agricultural Sciences, RDA) ;
  • Kim, Gun-Yeob (National Institute of Agricultural Sciences, RDA) ;
  • Lee, Jong-Sik (National Institute of Agricultural Sciences, RDA) ;
  • Choi, Eun-Jung (National Institute of Agricultural Sciences, RDA)
  • 이선일 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 김건엽 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 이종식 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 최은정 (농촌진흥청 국립농업과학원 기후변화생태과)
  • Received : 2019.07.16
  • Accepted : 2019.08.27
  • Published : 2019.09.30

Abstract

Cropland is a major source of atmospheric nitrous oxide (N2O) and we need technologies in the field of agriculture that can reduce the presence of N2O. In this study, a field experiment encompassing six treatments was conducted to determine the efflux of N2O in cropland during the growing season. An experimental plot was composed of two main sectors, no-tillage (NT) and conventional tillage (CT), which were subdivided into three plots according to types of nitrogen (N) sources: CF, chemical fertilizer; HV, hairy vetch+chemical fertilizer; and RY, rye+chemical fertilizer. The cumulative N2O emissions were 179.8 mg N2O m-2 for CF-CT, 108.1 mg N2O m-2 for HV-CT, 303.5 mg N2O m-2 for RY-CT, 86.7 mg N2O m-2 for CF-NT, 73.8 mg N2O m-2 for HV-NT, and 122.7 mg N2O m-2 for RY-NT during the fallow season. The CT, HV, and RY of no-tilled soils were reduced by 51.8, 31.7 and 59.6%, respectively (p<0.001). Our results indicate that the use of no-tillage and hairy vetch practice rather than conventional tillage and chemical fertilizer practice can decrease N2O emission.

농경지는 농업부문에서 발생하는 온실가스인 N2O의 배출원이다. 따라서 농경지에서 N2O를 줄일 수 연구가 필요하며, 본 연구에서는 농경지에 작물재배 시 무경운기술을 적용하고, 녹비작물로서 호밀과 헤어리배치를 각각 투입하여 N2O 배출량 비교 평가하였다. 재배 기간 중 토양에 질소원이 공급된 초기에 배출량이 높았으며, 토양온도는 20~25℃, 수분함량은 20~30% 범위에서 N2O 배출량이 높았다. 작물재배기간 동안 경운 유무와 투입된 질소원에 따른 처리구간 통계적 유의한 차이가 발생했다. 농경지 토양에서 배출되는 N2O는 무경운을 통해 CF, HV 그리고 RY 처리구에서 각각 51.8%, 31.7% 그리고 59.6% 감축되었다. 또한 무경운 헤어리배치(HV-NT) 처리구에서 관행(CF-CT) 처리구 대비 59.0% N2O 배출을 저감할 수 있었다. 헤어리배치를 투입함으로써 화학비료 사용량을 줄일 수 있고, 무경운을 통해 토양 교란을 방지하여 농경지 토양에서 배출되는 N2O를 저감할 수 있었다. 이러한 감축기술에 대한 온실가스 저감효과를 평가하는 연구와 향후 온실가스 감축사업과 연계할 수 있도록 검인증 방법을 포함한 방법론 구축 등이 필요하다. 이후 농업분야 온실가스 감축사업인 배출권거래제 외부사업, 농업농촌 자발적 온실가스 감축사업, 저탄소농축산물 인증제 등과 연계하여 농업현장에서 활용할 수 있도록 해야 한다.

Keywords

References

  1. Beare MH, ML Cabrera, PF Hendrix and DC Coleman. 1994. Aggregate-protected and unprotected organic matter pools in conventional and no -tillage soils. Soil Sci. Soc. Am. J. 58:787-795. https://doi.org/10.2136/sssaj1994.03615995005800030021x
  2. Burney JA, SJ Davis and DB Lobell. 2010. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. 107:12052-12057. https://doi.org/10.1073/pnas.0914216107
  3. Davidson EA, PA Matson, PM Vitousek, R Riley, K Dunklin, G Garcia-Mendez and JM Maass. 1993. Processes of regulating soil emissions of NO and $N_2O$ in a seasonally dry tropical forest. Ecology 74:130-139. https://doi.org/10.2307/1939508
  4. Firestone MK and EA Davidson. 1989. Microbiological basis of NO and $N_2O$ production and consumption in soil. In Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere (Andreae and Schimel, eds.). Wiley, New York.
  5. Hutchinson GL and GP Livingston. 1993. Use of chamber systems to measure trace gas fluxes. pp. 63-78. In Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. ASA Special Publication, Madison, Wisconsin.
  6. IPCC. 2007. Climate change. In The Scientific Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon S (ed.). Cambridge University Press, New York.
  7. IPCC. 2014. Climate change, synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, RK Pachauri and LA Meyer (ed.)]. IPCC, Geneva, Switzerland.
  8. Iserman K. 1994. Agriculture's share in the emissions of trace gases affecting the climate and some cause oriented proposals for reducing this share. Environ. Pollut. 83:95-111. https://doi.org/10.1016/0269-7491(94)90027-2
  9. Jian-gang H, Z Yong-li, B Hong-ying, Q Dong, C Jin-yu and W Chun-du. 2007. $N_2O$ emissions under different moisture and temperature regimes. Bull. Environ. Contam. Toxicol. 78:284-287. https://doi.org/10.1007/s00128-007-9118-6
  10. Kang SW, DC Seo, SG Lee, YJ Seo, JW Park, JH Ryu, MT Kim, HW Kang, JS Heo and JS Cho. 2013. Effect of incorporation times of green barley and hairy vetch on rice yield in paddy soil with liquid pig manure. Korean J. Environ. Agric. 32:287-293. https://doi.org/10.5338/KJEA.2013.32.4.287
  11. Karlen DL, R Lal, RF Follett, JM Kimble, JL Hatfield, JM Miranowski, CA Cambardella, A Manale, RP Anex and CW Rice. 2009. Crop residues: The rest of the story. Environ. Sci. Technol. 43:8011-8015. https://doi.org/10.1021/es9011004
  12. Kim GY, HC Jeong, KM Shim, SB Lee and DB Lee. 2011. Evaluation of $N_2O$ emissions with different growing periods (Spring and Autumn Seasons), tillage and no tillage conditions in a Chinese cabbage field. Korean J. Soil Sci. Fertil. 44:1239-1244. https://doi.org/10.7745/KJSSF.2011.44.6.1239
  13. Kim GY, HC Jeong, YK Son, SY Kim, JS Lee and PJ Kim. 2014. Effect of soil water potential on methane and nitrous oxide emissions in upland soil during red pepper cultivation. J. Korean Soc. Appl. Biol. Chem. 57:15-22. https://doi.org/10.1007/s13765-013-4228-9
  14. Kim, GY, US Na, SI Lee, HC Jeong, PJ Kim, JE Lee, YH Seo, JS Lee, EJ Choi and SU Suh. 2016. Assessment of integrated $N_2O$ emission factor for Korea upland soils cultivated with red pepper, soy bean, spring cabbage, autumn cabbage and potato. Korean J. Soil Sci. Fertil. 49:720-730. https://doi.org/10.7745/KJSSF.2016.49.6.720
  15. Kyoto protocol. 1998. United nation framework convention on climate change. Kyoto, Japan.
  16. Lee GZ, YS Choi, SK Yang, JH Lee and SY Yoon. 2012. Analysis of consumption of homemade organically processed food analysis of the carbon emission reduction effect from no-tillage in pepper (Capsicum annuum L.) cultivation. Korean J. Org. Agric. 20:503-518. https://doi.org/10.11625/KJOA.2012.20.4.503
  17. NIAST. 2000. Methods of soil and plant analysis. National Institute of Agricultural Sciences and Technology, RDA, Korea.
  18. Omonode RA, DR Smith, A Gal and TJ Vyn. 2011. Soil nitrous oxide emissions in corn following three decades of tillage and rotation treatments. Soil Sci. Soc. Am. J. 75:152-163. https://doi.org/10.2136/sssaj2009.0147
  19. Paris agreement. 2015. United nation framework convention on climate change. Paris, France.
  20. RDA. 2006. Fertilizer recommendation standards for various crops. Rural Development Administration, Korea.
  21. Reay DS, EA Davidson, KA Smith, P Smith, JM Melillo, F Dentener and PJ Crutzen. 2012. Global agriculture and nitrous oxide emissions. Nat. Clim. Chang. 2:410-416. https://doi.org/10.1038/nclimate1458
  22. Renault P and J Sierra. 1994. Modeling oxygen diffusion in aggregated soils: II. Anaerobiosis in topsoil layers. Soil Sci. Soc. Am. J. 58:1023-1030. https://doi.org/10.2136/sssaj1994.03615995005800040005x
  23. Skiba UM, LJ Sheppard, J MacDonald and D Fowler. 1998. Some key environmental variables controlling nitrous oxide emissions from agricultural and semi-natural soils in Scotland. Atmos. Environ. 32:3311-3320. https://doi.org/10.1016/S1352-2310(97)00364-6
  24. Yagi K. 1991. Emission of biogenic gas compounds from soil ecosystem and effect of global environment. 2. Methane emission from paddy fields. Soil Fert. Japan 62:556-562.
  25. Yang SK, YW Seo, JH Son, JD Park, KJ Choi and WJ Jung. 2012. Properties of Pepper growth and yield, cost down with no-tillage organic cultivation in vinyl greenhouse. Korean J. Org. Agric. 20:411-422.
  26. Yoo J, SH Woo, KD Park and KY Chung. 2016. Effect of no-tillage and conventional tillage practices on the nitrous oxide ($N_2O$) emissions in an upland soil: soil $N_2O$ emission as affected by the fertilizer applications. Appl. Biol. Chem. 59:787-797. https://doi.org/10.1007/s13765-016-0226-z