References
- Akbas, S.D. (2017), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 24(5), 579-589. http://dx.doi.org/10.12989/scs.2017.24.5.579
- Arioui, O., Belakhdar, K., Kaci, A. and Tounsi, A. (2018), "Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials", Steel Compos. Struct., Int. J., 27(6), 777-788. http://dx.doi.org/10.12989/scs.2018.27.6.777
- Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 19(2), 369-384. http://dx.doi.org/10.12989/scs.2015.19.2.369
- Bardell, N.S., Langley, R.S., Dunsdon, J.M. and Aglietti, G.S. (1999), "An h-p finite element vibration analysis of open conical sandwich panels and conical sandwich frusta", J. Sound Vib., 226(2), 345-377. https://doi.org/10.1006/jsvi.1999.2301
- Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., Int. J., 22(1), 91-112. http://dx.doi.org/10.12989/scs.2016.22.1.091
- Benferhat, R., Hassaine, D., Hadji, L. and Said, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., Int. J., 21(1), 123-136. http://dx.doi.org/10.12989/scs.2016.21.1.123
- Benlahcen, F., Belakhdar, K., Sellami, M. and Tounsi, A. (2018), "Thermal buckling resistance of simply supported FGM plates with parabolic-concave thickness variation", Steel Compos. Struct., Int. J., 29(5), 591-602. http://dx.doi.org/10.12989/scs.2018.29.5.591
- Bouderba, B. (2018), "Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory", Steel Compos. Struct., Int. J., 27(3), 311-325. http://dx.doi.org/10.12989/scs.2018.27.3.311
- Boutahar, L. and Benamar, R. (2016), "A homogenization procedure for geometrically non-linear free vibration analysis of functionally graded annular plates with porosities, resting on elastic foundations", Ain Shams Eng. J., 7(1), 313-333. https://doi.org/10.1016/j.asej.2015.11.016
- Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., Int. J., 23(3), 251-261. http://dx.doi.org/10.12989/scs.2017.23.3.251
- Dehkordi, M.B. and Khalili, S.M.R. (2015), "Frequency analysis of sandwich plate with active SMA hybrid composite face-sheets and temperature dependent flexible core", Compos. Struct., 123, 408-419. https://doi.org/10.1016/j.compstruct.2014.12.068
- Fard, K.M. (2015), "Higher order static analysis of truncated conical sandwich panels with flexible cores", Steel Compos. Struct., Int. J., 19(6), 1333-1354. http://dx.doi.org/10.12989/scs.2015.19.6.1333
- Fazzolari, F.A. (2015), "Natural frequencies and critical temperatures of functionally graded sandwich plates subjected to uniform and non-uniform temperature distributions", Compos. Struct., 121, 197-210. https://doi.org/10.1016/j.compstruct.2014.10.039
- Frostig, Y., Baruch, M., Vilnay, O. and Sheinman, I. (1992), "High-order theory for sandwich-beam behavior with transversely flexible core", J. Eng. Mech., 118(5), 1026-1043. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:5(1026)
- Frostig, Y., Birman, V. and Kardomateas, G.A. (2018), "Non-linear wrinkling of a sandwich panel with functionally graded core-Extended high-order approach", Int. J. Solids Struct., 148, 122-139. https://doi.org/10.1016/j.ijsolstr.2018.02.023
- Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. https://doi.org/10.1016/j.compstruct.2014.06.023
- Jin, G., Ye, T. and Su, Z. (2015), "Conical Shells", In: Structural Vibration, Springer, Berlin, Heidelberg, Germany.
- Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., Int. J., 15(4), 399-423. http://dx.doi.org/10.12989/scs.2013.15.4.399
- Khalili, S.M.R. and Mohammadi, Y. (2012), "Free vibration analysis of sandwich plates with functionally graded face sheets and temperature-dependent material properties: A new approach", Eur. J. Mech. A-Solid, 35, 61-74. https://doi.org/10.1016/j.euromechsol.2012.01.003
- Khayat, M., Dehghan, S.M., Najafgholipour, M.A. and Baghlani, A. (2018), "Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method", Steel Compos. Struct., Int. J., 28(6), 735-748. http://dx.doi.org/10.12989/scs.2018.28.6.735
- Kiani, Y., Dimitri, R. and Tornabene, F. (2018), "Free vibration study of composite conical panels reinforced with FG-CNTs", Eng. Struct., 172, 472-482. https://doi.org/10.1016/j.engstruct.2018.06.006
- Li, F.M., Kishimoto, K. and Huang, W.H. (2009), "The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh-Ritz method", Mech. Res. Commun., 36(5), 595-602. https://doi.org/10.1016/j.mechrescom.2009.02.003
- Liu, R.H. and Li, J. (1995), "Non-linear vibration of shallow conical sandwich shells", Int. J. Nonlin. Mech., 30(2), 97-109. https://doi.org/10.1016/0020-7462(94)00032-6
- Liu, M., Cheng, Y. and Liu, J. (2015), "High-order free vibration analysis of sandwich plates with both functionally graded face sheets and functionally graded flexible core", Compos. Part B-Eng., 72, 97-107. https://doi.org/10.1016/j.compositesb.2014.11.037
- Mahamood, R.M. and Akinlabi, E.T. (2017), "Types of Functionally Graded Materials and Their Areas of Application", In: Functionally Graded Materials. Topics in Mining, Metallurgy and Materials Engineering, Springer, Cham.
- Malekzadeh, P., Fiouzb, A.R. and Sobhrouyan, M. (2012), "Three-dimensional free vibration of functionally graded truncated conical shells subjected to thermal environment", Int. J. Pres. Ves. Pip., 89, 210-221. https://doi.org/10.1016/j.ijpvp.2011.11.005
- Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157
- Mouli, B.C., Kar, V.R., Ramji, K. and Rajesh, M. (2018), "Free vibration of functionally graded conical shell", Mater. Today-Proc., 5(6), 14302-14308. https://doi.org/10.1016/j.matpr.2018.03.012
- Najafov, A.M., Sofiyev, A.H. and Kuruoglu, N. (2014), "On the solution of nonlinear vibration of truncated conical shells covered by functionally graded coatings", Acta Mech., 225(2), 563-580. https://doi.org/10.1007/s00707-013-0980-5
- Reddy, J.N. (1998), "Thermo Mechanical Behavior of Functionally Graded Materials", Texas A&M University GE Station Department of Mechanical Engineering.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
- Reddy J.N. (2003), Mechanics of Laminated Composite Plates and Shells, Theory and Application, CRC Press, New York, USA.
- Reddy, J.N. (2007), Theory and Analysis of Elastic Plates and Shells, CRC Press, New York, USA.
- Salami, S.J. and Dariushi, S. (2018), "Geometrically nonlinear analysis of sandwich beams under low velocity impact: analytical and experimental investigation", Steel Compos. Struct., Int. J., 27(3), 273-283. http://dx.doi.org/10.12989/scs.2018.27.3.273
- Shakouri, M. (2019), "Free vibration analysis of functionally graded rotating conical shells in thermal environment", Compos. Part B-Eng., 163, 574-584. https://doi.org/10.1016/j.compositesb.2019.01.007
- Shen, H.S. (2009), Functionally Graded Materials Nonlinear Analysis of Plates and Shells, CRC Press, New York, USA.
- Shokravi, M. (2017), "Buckling of sandwich plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory", Steel Compos. Struct., Int. J., 23(6), 623-631. http://dx.doi.org/10.12989/scs.2017.23.6.623
- Shu, C. (1996), "An efficient approach for free vibration analysis of conical shells", Int. J. Mech. Sci., 38(8-9), 935-949. https://doi.org/10.1016/0020-7403(95)00096-8
- Sofiyev, A.H. (2012), "The non-linear vibration of FGM truncated conical shells", Compos. Struct., 94(7), 2237-2245. https://doi.org/10.1016/j.compstruct.2012.02.005
- Sofiyev, A.H. (2015), "Buckling analysis of freely-supported functionally graded truncated conical shells under external pressures", Compos. Struct., 132, 746-758. https://doi.org/10.1016/j.compstruct.2015.06.026
- Sofiyev, A.H. (2016), "Parametric vibration of FGM conical shells under periodic lateral pressure within the shear deformation theory", Compos. Part B-Eng., 89, 282-294. https://doi.org/10.1016/j.compositesb.2015.11.017
- Sofiyev, A.H. (2018), "Application of the first order shear deformation theory to the solution of free vibration problem for laminated conical shells", Compos. Struct., 188, 340-346. https://doi.org/10.1016/j.compstruct.2018.01.016
- Sofiyev, A.H. (2019), "Review of research on the vibration and buckling of the FGM conical shells", Compos. Struct., 211, 301-317. https://doi.org/10.1016/j.compstruct.2018.12.047
- Sofiyev, A.H. and Kuruoglu, N. (2015), "On a problem of the vibration of functionally graded conical shells with mixed boundary conditions", Compos. Part B-Eng., 70, 122-130. https://doi.org/10.1016/j.compositesb.2014.10.047
- Sofiyev, A.H. and Osmancelebioglu, E. (2017), "The free vibration of sandwich truncated conical shells containing functionally graded layers within the shear deformation theory", Compos. Part B-Eng., 120, 197-211. https://doi.org/10.1016/j.compositesb.2017.03.054
- Sofiyev, A.H. and Schnack, E. (2012), "The vibration analysis of FGM truncated conical shells resting on two-parameter elastic foundations", Mech. Adv. Mater. Struct., 19(4), 241-249. https://doi.org/10.1080/15376494.2011.642934
- Tahouneh, V. (2018), "3-D Vibration analysis of FG-MWCNTs/Phenolic sandwich sectorial plates", Steel Compos. Struct., Int. J., 26(5), 649-662. http://dx.doi.org/10.12989/scs.2018.26.5.649
- Talebitooti, M. (2018), "Thermal effect on free vibration of ring-stiffened rotating functionally graded conical shell with clamped ends", Mech. Adv. Mater. Struct., 25(2), 155-165. https://doi.org/10.1016/j.jsv.2009.07.031
- Tornabene, F., Viola, E. and Inman, D.J. (2009), "2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures", J. Sound Vib., 328(3), 259-290. https://doi.org/10.1016/j.jsv.2009.07.031
- Van Dung, D. and Chan, D.Q. (2017), "Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orthogonal stiffeners based on FSDT", Compos. Struct., 159, 827-841. https://doi.org/10.1016/j.compstruct.2016.10.006
- Vinson, J.R. (2018), The Behavior of Sandwich Structures of Isotropic and Composite Materials, TECHNOMIC, Pennsylvania, USA. https://doi.org/10.1201/9780203737101
- Wang Y.Q. and Zu J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023
Cited by
- The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047
- Bending analysis of the multi-phase nanocomposite reinforced circular plate via 3D-elasticity theory vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.601
- Vibration of two types of porous FG sandwich conical shell with different boundary conditions vol.79, pp.4, 2019, https://doi.org/10.12989/sem.2021.79.4.401