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SPECTRAL METHOD FOR RECONSTRUCTING

PHYLOGENETIC TREE

Seong-Hun Paeng and Chunjae Park

Abstract. A new simple method is proposed for reconstructing phyloge-

netic trees, which we call the spectral method. The most common distance
based method is the neighbor-joining method which is based on the mini-

mum evolution principle. The spectral method shows similar performance
to the neighbor-joining method for simulated data generated by seq-gen.

For real data, the spectral method shows much better performance than

the neighbor-joining method. Hence it can be a complementary method
for reconstructing phylogenetic trees.

1. Introduction

Phylogenetics is the science which studies evolutionary relationship between
species. In order to study the relationship, phylogenetic trees are constructed
which link the species. Many methods for reconstructing phylogenetic tree
have been proposed. The most common method based on genetic distances is
the neighbor-joining (NJ) method developed by Saitou and Nei [4], which is
based on the principle of minimum evolution. The standard algorithm based
on this principle is to examine all possible topologies and to choose one which
shows the smallest amount of total evolutionary changes. The neighbor-joining
method approximately produces the minimum evolution tree. The neighbor-
joining method is a recursive procedure taking the best candidate for a cherry
and then peeling off the chosen one. Recall that a pair of leaves in a tree which
are adjacent to the same internal node is called a cherry.

We will propose a new simple method for reconstructing phylogenetic trees
which are trivalent. Our method is not based on the minimum evolution princi-
ple. Our purpose is to construct a tree whose tree metric approximates to dis-
tance data of DNA sequences. The tree metric is the distance function such that
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the distance between two leaves (terminal nodes) is the sum of lengths of edges
in the unique paths connecting two leaves. We will define a set ΛXY ⊂ R called
the spectrum for a pair of leaves (X,Y ). Then we can show that the cardinality
|ΛXY | = 1 for a cherry (X,Y ) if the distances are induced from a tree metric.
So our basic idea is to take a pair (X,Y ) as a cherry if max ΛXY −min ΛXY is
small. Hence our algorithm is based on finding minimal spectral range rather
than minimal evolution.

In Section 2, we will define the spectrum and use the spectrum to reconstruct
a tree whose metric is a tree metric. Actually, the neighbor-joining method also
reconstructs a tree completely when the metric is a tree metric. We will show
how to use the spectrum for reconstructing a tree. In general, the pairwise
distances on a phylogenetic tree are not induced from a tree metric. In Section
3, we will propose the spectral method for a non tree metric. In Section 4,
we will give experimental results and compare the performance of the spectral
method with the performance of the neighbor-joining method.

2. Tree reconstruction for tree metric

Phylogenetic tree reconstruction is closely related to differential geomet-
ric problems, the boundary rigidity problem [2] and Plateau’s problem. The
boundary rigidity problem is to determine the metric of a compact Riemann-
ian manifold with boundary, up to isometry, by knowing the boundary distance
function between boundary points. Plateau’s problem is concerned about the
existence of a minimal surface with a given boundary.

Let T be a tree. We can consider the set of leaves as the boundary ∂T
of T . Phylogenetic tree reconstruction is to construct a tree whose metric
restricted to ∂T is distance data of DNA sequences in ∂T . Hence the tree
reconstruction has similarity to the boundary rigidity problem. On the other
hand, the minimum evolution tree can be considered as a minimal surface with
given boundary data set. So the principle of minimum evolution is similar to
Plateau’s problem.

In this section, we define the spectrum and use it to reconstruct a tree for a
tree metric. If distances between leaves are given by a tree metric, the bound-
ary rigidity problem is completely solved, i.e., the metric of T is completely
determined. Thus the tree is boundary rigid for a tree metric.

Let X,Y, Z be nodes in T . We denote by lXY the path from X to Y . Let
the paths lXY and lXZ be split at a node O in the interior of the path lXY

(Fig. 1). We denote the distance between the nodes A and B by d(A,B). Let
x = d(O,X), y = d(O, Y ), z = d(O,Z). Then it is well known that for a tree
metric,

(1) d(X,Y ) = x+ y, d(Y,Z) = y + z, d(Z,X) = x+ z,
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Figure 1. x is the spectrum λXY (Z) of X,Y for Z

so

(2)

x =
1

2
(d(X,Y )− d(Y, Z) + d(Z,X)),

y =
1

2
(d(X,Y ) + d(Z,X)− d(Y, Z)),

z =
1

2
(d(Y,Z) + d(X,Y )− d(Z,X)).

For the fixed nodes X,Y , we consider x as a function of Z. From the above
observation, we define the spectrum as follows:

Definition 1. For an ordered pair of nodes (X,Y ), the function λXY : ∂T → R
is defined as follows:

λXY (Z) =
1

2
(d(X,Y )− d(Y,Z) + d(Z,X)).

Then we define the spectrum for (X,Y ) as the set

ΛXY = {λXY (Z) | Z ∈ ∂T}.

Note that λXY 6= λY X and λXY ⊂ [0, d(X,Y )]. The spectrum ΛXY =
{λXY (Z) | Z ∈ ∂T} is the set of distances from X to the nodes in the path
lXY . Then we obtain the following observation immediately.

Proposition 2.1. For a tree metric, if (X,Y ) is a cherry, then the cardinality
of ΛXY satisfies that |ΛXY | = 1.

It will be used as the basic discriminant for a cherry in the next section.
Let ΛXY = {λ1, . . . , λm}, where λi < λj for i < j. Let Vj be the node in

lXY such that d(X,Vj) = λj . Let Sj(X,Y ) be the subset of ∂T defined as
follows:

Sj(X,Y ) = {P | λXY (P ) = λj} ⊂ ∂T.
(See Fig. 2.) Then d(Vj , P ) = d(X,P )− λj for P ∈ Sj(X,Y ).
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Take a terminal node Yk in Sk(X,Y ) and follow the same process as above,
i.e., find the spectrum for (Vk, Yk)

ΛVkYk
= {λk1, . . . , λkm}.

Then we can find the internal node Vki corresponding to λki in the branch
connecting Vk and Yk. Also we denote the set of terminal nodes connected to
Vki by Si(Vk, Yk), i.e.,

Si(Vk, Yk) = {P | λVkYk
(P ) = λki} ⊂ ∂T.

Take Yki ∈ Si(Vk, Yk) and follow the same procedure with Vki, Yki instead of
Vk, Yj . (See Fig. 2.)

Inductively, we can find every nodes and the distances between nodes.

Figure 2. Spectrum of X,Y and reconstruction of tree

3. Spectral method

Based on Proposition 2.1, we propose the spectral method to reconstruct
the phylogenetic tree. Similarly as the neighbor-joining method, the spectral
method is a recursive procedure picking a cherry and then peeling off the chosen
one. Hence we only need to explain the cherry picking algorithm.

If (X,Y ) is a cherry, then there is exactly one internal node in a path lXY ,
which implies that the spectrum ΛXY is one point set with respect to tree
metric. Hence the first part of our algorithm is to take a pair (X,Y ) such that
λXY is almost constant (Step 1, 2).

In Fig. 3, ΛXY has two values whose difference is ε > 0 if the metric is a
tree metric. If ε is very small, then λXY could seem to be almost constant
and (X,Y ) could be taken as a cherry although (X,Y ) is not a cherry, since
the distances between leaves are not exactly induced from a tree metric. The
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second part of our algorithm is an error correcting process (Step 3, 4). For
X,Y ∈ ∂T , we define a function F as follows:

(3) F (X,Y ) =
∑

W∈∂T\{X,Y }

λXY (W ).

Then we obtain the following proposition immediately.

Proposition 3.1. Let T be a tree with a tree metric such that |∂T | = n. If
(A,B) is a cherry, then F (A,B) = (n − 2)d when ΛAB = {d}. Furthermore,
if the second smallest spectrum of ΛAC is d+ ε for C ∈ ∂T \ {A,B}, then

(4) F (A,B) = (n− 2)d < (n− 2)d+ (n− 3)ε ≤ F (A,C).

Note that the smallest spectrum of ΛAC is d, which is the distance from A
to the closest internal node. Proposition 3.1 follows from the observation that
λAC(D) ≥ d + ε when D 6= B. Proposition 3.1 is our second discriminant for
a cherry.

Step 3 is the process to verify if (X0, Y0) chosen in Step 2 is really a cherry by
using F . In Fig. 3, (X,Y ) is not a cherry and the spectral range max ΛXY −
min ΛXY = ε for a tree metric. However, if ε > 0 is very small, then λXY

could seem to be almost constant. So the first part of algorithm may take
(X,Y ) as a cherry. In order to correct this error, we apply Proposition 3.1.
First, consider the case that X is contained in a cherry (Fig. 3(A)). We have
F (X,Z) = (n−2)d and F (X,Y ) = (n−2)d+ (n−3)ε for a tree metric. Hence
if F (X,Y ) > F (X,Z), then (X,Y ) might not be a cherry in a high probability
from (4). Note that F (X,Y )−F (X,Z) = (n− 3)ε is much larger than ε, so F
better discriminates whether (X,Y ) is a cherry or not. So we do not pick (X,Y )
as a cherry if F (X,Z) is the minimum among {F (X,W ) | W ∈ ∂T \ {X}}.

Second, we consider the case that X is not in a cherry as we see in Fig. 3(B).
By the same reason as in Fig. 3(A), we could take (X,Y ) as a cherry if ε > 0
is very small. In such a case, we have F (X,Y ) = F (X,Z) both of which are
the minimum for a fixed X. So only with the comparisons with F (X, ·)’s, we
cannot exclude (X,Y ) for a cherry even if (Y, Z) is a cherry. Hence, we also
consider F (Y, ·) together with F (X, ·). Then we can exclude (Y,X).

Consequently, the cherry picking algorithm in the spectral method is as
follows. We denote the average of the function f : V → R by meanf . Also we
denote by argminx∈V f(x) a minimizer x0 ∈ V satisfying that

f(x0) ≤ f(x) for all x ∈ V.

The initial set of ordered pairs of leaves is as follows:

L = {(X,Y ) ∈ ∂T × ∂T | X 6= Y }.

Cherry picking algorithm in spectral method

Step 1: Compute ΛXY for each ordered pair (X,Y ) ∈ L.
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(a) (b)

Figure 3. Failure of Step 1,2 by error of spectrum

Step 2: Find a cherry candidate

(X0, Y0) = argmin(X,Y )∈L

max ΛXY −min ΛXY

meanΛXY
.

Step 3: Check two additional criteria:

(5) Y0 = argminZ∈∂T\{X0} F (X0, Z), X0 = argminZ∈∂T\{Y0} F (Y0, Z).

If two criteria in (5) are all checked yes, go to Step 4. If not, go to Step
2 with the replaced L by

L = L \ {(X0, Y0), (Y0, X0)}.

Step 4: Take (X0, Y0) as a cherry.

If we meet a pathological case that L = ∅ in Step 2, we could choose the
first cherry candidate as a cherry.

Once a cherry (X̄, Ȳ ) is chosen in the above cherry picking algorithm, renew
the terminal vertices by replacing X̄, Ȳ with the node [X̄, Ȳ ] and repeat the
same algorithm to pick a next cherry with the distance redefined as

d([X̄, Ȳ ],W ) = d(X̄,W )− λX̄Ȳ (W ), W 6= X,Y.

Remark 3.2. In order to simplify the above algorithm, one may take (X,Y ) as a
cherry when F (X,Y ) is the minimum without the first part of algorithm (Step
1,2,3). Then even if T has a tree metric, the tree could not be reconstructed
as follows: In Fig. 3(B), if d(O,X) = δ, then F (X,Y ) = (n− 2)δ + 2ε. If δ is
small compared to d, then (X,Y ) can be chosen as a cherry instead of (Y,Z).

Example 1. At first glance, Q(X,Y ) in the neighbor-joining method [1] and
F (X,Y ) in the spectral method have some similarity, where

Q(X,Y ) = (n− 2)d(X,Y )−
∑
Z

d(X,Z)−
∑
Z

d(Y, Z).
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Simply, we consider a quartet (Fig. 4). Let (A,B) be a cherry. Then

Q(A,B) = −2(a+ b+ c+ d)− 4α, Q(A,C) = −2(a+ b+ c+ d)− 2α,

where α is the distance between the internal nodes. Hence we take (A,B) as a
cherry if Q(A,B) is the minimum.

On the other hand,

F (A,B) = 2a, F (A,C) = 2a+ α,

hence Q is a function concerned about a sum of distances between nodes and F
is a function concerned about the distance from a leaf and the closest internal
node, i.e., spectrum.

In the case of the neighbor-joining method, Q(A,B) = Q(C,D), so it is
necessary to determine which pair between (A,B) and (C,D) should be selected
for a cherry. On the other hand, F (A,B) 6= F (C,D) in our algorithm.

Figure 4. Lengths of edges for quartet

4. Performance analysis

4.1. Building phylogenetic trees with simulated data

We chose phylogenetic tree models as in Fig. 5 and simulated DNA sequence
data on these trees using the program seq-gen with the GTR substitution
model [3]. We compared the reconstruction percents for the neighbor-joining
and the spectral method in Tables 1, 2. For each sequence length, 1000 DNA
data sets were used. The spectral method has the edge over the neighbor-
joining in case of the model A in Fig. 5(A), but loses in case of the model B
in Fig. 5(B). The last columns in Tables 1, 2 show the numbers of correctly
reconstructed data sets by either the neighbor-joining method or the spectral
method. For example, in the case of (a, b) = (0.01, 0.07) of Model A for 500bps,
the spectral method succeeds in about 10% ≈ 2.8

27.2 among the failed data sets
by the neighbor-joining method. In the case of (a, c) = (0.01, 0.04) of Model B
for 500bps, the spectral method succeeds in about 8% ≈ 2.3

30.1 among the failed
data sets by the neighbor-joining method. Hence the spectral method can be
considered as a complementary method for reconstructing tree.
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(a) Model A with

(a, b) = (0.02, 0.19)

(b) Model B with

(a, c) = (0.02, 0.13)

Figure 5. Model trees

Table 1. Comparing results for algorithms for Model A

bps NJ SP NJ ∪ SP
100 10.5 11.0 12.4
200 26.4 28.9 29.6
300 48.3 49.0 51.3
400 62.3 64.9 66.2
500 72.8 74.5 75.6
600 81.7 83.4 84.4
700 86.2 87.0 87.8
800 89.5 91.4 91.7
900 93.3 94.8 95.1
1000 94.8 95.4 95.8

(a, b) = (0.01, 0.07)

bps NJ SP NJ ∪ SP
100 6.3 6.5 7.1
200 17.6 18.5 20.2
300 29.4 30.6 32.5
400 45.7 47.8 49.3
500 55.8 58.3 59.9
600 68.7 70.8 72.3
700 73.4 75.1 76.7
800 77.2 80.6 81.0
900 83.4 84.7 85.5
1000 89.4 90.6 90.9

(a, b) = (0.02, 0.19)

4.2. Building phylogenetic trees with real data

For real data, we use the September 2005 ENCODE Multi-Species Sequence
Analysis sequence freeze with multiple sequence alignments [5], which are avail-
able at http://hgdownload.soe.ucsc.edu/goldenPath/hg17/encode/align
ments/SEP-2005. We restrict our attention to the rodent problem to construct
the phylogenetic tree for 8 species: human, chimp, galago, mouse, rat, cow,
dog, and chicken. We process each of the 44 ENCODE regions to obtain data
sets which have ungapped columns greater than 100 bps in length. We obtain
83 data sets in manually chosen 14 Enm regions and 397 data sets in all 44
Encode regions.
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Table 2. Comparing results for algorithms for Model B

bps NJ SP NJ ∪ SP
100 10.5 8.9 11.6
200 28.9 27.9 32.0
300 47.0 45.9 50.4
400 60.1 57.6 63.0
500 69.9 66.6 72.2
600 76.6 73.5 78.4
700 85.0 82.3 86.8
800 87.6 86.2 89.5
900 91.6 89.6 92.4
1000 94.7 93.9 96.1

(a, c) = (0.01, 0.04)

bps NJ SP NJ ∪ SP
100 5.7 5.6 6.4
200 18.1 17.1 20.8
300 30.6 29.1 33.6
400 43.4 42.3 47.6
500 53.9 51.8 56.7
600 60.7 60.8 65.3
700 72.6 71.4 76.4
800 75.5 73.9 79.2
900 80.9 78.2 82.9
1000 84.8 84.9 87.0

(a, c) = (0.02, 0.13)

The proposed spectral method shows the better results than the neighbor
joining method as given in Table 3. In Enm case, it is almost twice.

Table 3. Comparing results for algorithms on data from EN-
CODE alignments

data type NJ SP NJ ∪ SP
83 data sets in Enm region 10.8 20.5 24.1
397 data sets in All region 8.1 12.6 16.1

5. Conclusion

The spectral method shows similar performance to the neighbor-joining
method for simulated data. The spectral method could find significant amount
of correct trees among the failed data sets by the neighbor-joining method.
Furthermore, the spectral method shows much better performance than the
neighbor-joining method for real data. Hence, it could be a quite good com-
plementary method.
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