ON PSEUDO-SLANT SUBMANIFOLDS OF A NEARLY (ε, δ)-TRANS SASAKIAN MANIFOLD

Jae-Bok Jun and Shamsur Rahman

Abstract

The purpose of the paper is to study the notion of pseudoslant submanifolds and the existence of some structures on a pseudo-slant submanifolds of nearly (ε, δ)-trans-Sasakian manifold. Totally umbilical proper-slant submanifolds are worked out. We discuss the integrability of distributions on pseudo-slant submanifolds of nearly (ε, δ)-trans-Sasakian manifold.

1. Introduction

The concept of (ε)-Sasakian manifolds has been defined by Bejancu and Duggal in [1]. Later, Xufeng and Xiaoli in [12] introduced and studied that these manifolds are real hypersurfaces of indefinite Kaehlerian manifolds. Kumar et al. in [6] also studied the curvature conditions of these manifolds and Tripathi et al. in [11] investigated (ε)-almost paracontact manifolds. De and Sarkar in [4] also introduced (ε)-Kenmotsu manifolds and studied conformally flat, Weyl semi-symmetric, ϕ-recurrent (ε)-Kenmotsu manifolds. On the other hand Chen in [3] introduced the idea of slant submanifolds in natural generalization of both holomorphic and totally real immersions. A. Lotta in [7] also studied the idea of slant submanifolds of a Riemannian manifold into an almost contact metric manifold. L. Cabrerizo et al. in [2] defined slant submanifolds of Sasakian manifolds. Semi-slant submanifolds of an almost Hermitian manifold have been studied by N. Papagiuc in [8]. V. A. Khan et al. in [5] also defined contact version of pseudo-slant submanifold in a Sasakian manifold. In $[9,10]$, the author and et al., studied slant and pseudo slant submanifolds in quasi Sasakian manifolds and CR-submanifolds of a nearly (ε, δ)-trans-Sasakian manifold.

The purpose of the paper is to study the notion of pseudo-slant submanifolds and the existence of some structures on a pseudo-slant submanifolds of a

[^0]nearly (ε, δ)-trans-Sasakian manifold. Also the purpose of the paper is to study the notion of a pseudo-slant submanifold of a nearly quasi-Sasakian manifold. In Section 2 we recall some results and formula for later use. In Section 3 we define a pseudo-slant submanifold of a nearly (ε, δ)-trans-Sasakian manifold. In Section 4 we prove the classification theorem for totally umbilical pseudo-slant submanifolds of a nearly (ε, δ)-trans-Sasakian manifold. In Section 5 it is concern with the integrability of the distributions on the pseudo-slant submanifolds of a nearly (ε, δ)-trans-Sasakian manifold and obtain some characterizations.

2. Preliminaries

Let \bar{M} be an almost contact metric manifold of dimension n equipped with an almost contact metric structure (ϕ, ξ, η, g) consisting of a $(1,1)$-tensor ϕ, a vector ξ, a 1-form η and a Riemannian metric g satisfying

$$
\begin{equation*}
\phi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1, \quad \phi \xi=0, \quad \eta(\phi X)=0 . \tag{2.1}
\end{equation*}
$$

An almost contact metric manifold \bar{M} is called an (ε)-almost contact metric manifold if

$$
\begin{align*}
& \eta(X)=\varepsilon g(X, \xi), \quad g(\xi, \xi)=\varepsilon \\
& g(\phi X, \phi Y)=g(X, Y)-\varepsilon \eta(X) \eta(Y), \forall X, Y \epsilon T M \tag{2.2}
\end{align*}
$$

where $\varepsilon=g(\xi, \xi)= \pm 1$.
An (ε)-almost contact metric manifold is called an (ε, δ)-trans-Sasakian manifold if

$$
\begin{gathered}
\left(\bar{\nabla}_{X} \phi\right) Y=\alpha\{g(X, Y) \xi-\varepsilon \eta(Y) X\}+\beta\{g(\phi X, Y) \xi-\delta \eta(Y) \phi X\} \\
\bar{\nabla}_{X} \xi=-\varepsilon \alpha \phi X-\beta \delta \phi^{2} X
\end{gathered}
$$

holds for some smooth functions α and β on \bar{M} and $\varepsilon= \pm 1, \delta= \pm 1$. For $\beta=0, \alpha=1$, an ($\varepsilon, \delta)$-trans-Sasakian manifold reduces to an (ε)-Sasakian and for $\alpha=0, \beta=1$, it reduces to a (δ)-Kenmotsu manifold.

Further, an (ε)-almost contact metric manifold is called nearly (ε, δ)-transSasakian manifold if

$$
\begin{align*}
& \left(\bar{\nabla}_{X} \phi\right) Y+\left(\bar{\nabla}_{Y} \phi\right) X \tag{2.3}\\
= & \alpha\{2 g(X, Y) \xi-\varepsilon \eta(Y) X-\varepsilon \eta(X) Y\}-\beta \delta\{\eta(Y) \phi X+\eta(X) \phi Y\} .
\end{align*}
$$

The covariant derivative of the tensor filed ϕ is defined as

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) Y=\bar{\nabla}_{X} \phi Y-\phi \bar{\nabla}_{X} Y \tag{2.4}
\end{equation*}
$$

Now, let M be a submanifold immersed in \bar{M}. The Riemannian metric induced on M is denoted by the same symbol g. Let $T M$ and $T^{\perp} M$ be the Lie algebras of vector fields tangential to M and normal to M respectively and ∇ be the induced Levi-Civita connection on M. Then the Gauss and Weingarten formulas are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{2.6}
\end{equation*}
$$

for any $X, Y \epsilon T M$ and $N \epsilon T^{\perp} M$, where ∇^{\perp} is the connection on the normal bundle $T^{\perp} M, h$ is the second fundamental form and A_{N} is the Weingarten map associated with N as

$$
\begin{equation*}
g\left(A_{V} X, Y\right)=g(h(X, Y), V) \tag{2.7}
\end{equation*}
$$

For any $X \in T M$ and $N \in T^{\perp} M$, we write

$$
\begin{gather*}
\phi X=T X+N X \quad\left(T X \in T M \quad \text { and } \quad N X \in T^{\perp} M\right) \tag{2.8}\\
\phi V=t V+n V \quad\left(t V \in T M \quad \text { and } \quad n V \in T^{\perp} M\right) \tag{2.9}
\end{gather*}
$$

The submanifold M is invariant if N is identically zero. On the other hand, M is anti-invariant if T is identically zero. From (2.1) and (2.8), we have

$$
\begin{equation*}
g(X, T Y)=-g(T X, Y) \tag{2.10}
\end{equation*}
$$

for any $X, Y \in T M$. If we put $Q=T^{2}$, we have

$$
\begin{align*}
& \left(\nabla_{X} Q\right) Y=\nabla_{X} Q Y-Q \nabla_{X} Y \tag{2.11}\\
& \left(\nabla_{X} T\right) Y=\nabla_{X} T Y-T \nabla_{X} Y \tag{2.12}\\
& \left(\nabla_{X} V\right) Y=\nabla_{X}^{\perp} V Y-V \nabla_{X} Y \tag{2.13}
\end{align*}
$$

for any $X, Y \in T M$. In view of (2.5), (2.8), and (2.4) it follows that

$$
\begin{gather*}
\bar{\nabla}_{X} \xi=-\varepsilon \alpha T X+\beta \delta X-\eta(X) \xi \tag{2.14}\\
h(X, \xi)=-\varepsilon \alpha N X \tag{2.15}
\end{gather*}
$$

The mean curvature vector H of M is given by

$$
\begin{equation*}
H=\frac{1}{n} \operatorname{trace}(h)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right), \tag{2.16}
\end{equation*}
$$

where n is the dimension of M and $e_{1}, e_{2}, \ldots, e_{n}$ is a local orthonormal frame of M. A submanifold M of an contact metric manifold \bar{M} is said to be totally umbilical if

$$
\begin{equation*}
h(X, Y)=g(X, Y) H \tag{2.17}
\end{equation*}
$$

where H is the mean curvature vector. A submanifold M is said to be totally geodesic if $h(X, Y)=0$ for each $X, Y \in \Gamma(T M)$ and M is said to be minimal if $H=0$.

3. Pseudo-slant submanifolds of nearly (ε, δ)-trans-Sasakian manifold

Definition 3.1. Let M be a submanifold of a nearly (ε, δ)-trans-Sasakian manifold \bar{M}. For each non-zero vector X tangent to M at x, the angle $\theta(x) \in[0, \pi / 2]$ between ϕX and $T X$ is called the slant angle or the Wirtinger angle of M. If the slant angle is constant for each $X \in \Gamma(T M)$ and $x \in M$, then the submanifold is also called the slant submanifold. If $\theta=0$, the submanifold is invariant submanifold. If $\theta=\pi / 2$, then it is called an anti-invariant submanifold. If $\theta(x) \in[0, \pi / 2]$, then it is called a proper-slant submanifold.

Now, we will give the definition of pseudo-slant submanifold which are a generalization of the slant submanifolds.

Definition 3.2. We say that M is a pseudo-slant submanifold of nearly (ε, δ) -trans-Sasakian manifold \bar{M} if there exist two orthogonal distributions D^{\perp} and D_{θ} on M such that
(a) $T M$ admits the orthogonal direct decomposition $T M=D^{\perp} \oplus D_{\theta}$, $\xi=\Gamma(D)$,
(b) The distribution D_{θ} is anti-invariant, that is, $f\left(D_{\theta}\right) \subseteq T^{\perp} M$,
(c) The distribution D^{\perp} is a slant with slant angle $\theta \neq 0$, that is, the angle between $f\left(D^{\perp}\right)$ and D^{\perp} is a constant.

From the definition, it is clear that if $\theta=0$, then the pseudo-slant submanifold is a semi-invariant submanifold. On the other hand, if $\theta=\pi / 2$, submanifold becomes an anti-invariant. On the other hand we suppose that M is a pseudo-slant submanifold of nearly (ε, δ)-trans-Sasakian manifold \bar{M} and we denote the dimensions of distributions D^{\perp} and D_{θ} by d_{1} and d_{2} respectively, then we have the following cases:
(a) If $d_{2}=0$, then M is an anti-invariant submanifold,
(b) If $d_{1}=0$ and $\theta=0$, then M is an invariant submanifold,
(c) If $d_{1}=0$ and $\theta \neq 0$, then M is a proper slant submanifold with slant angle θ,
(d) If $d_{1} \cdot d_{2} \neq 0$ and $\theta \in[0, \pi / 2]$, then M is a proper pseudo-slant submanifold.
Let M be a proper pseudo-slant submanifold of a contact metric manifold \bar{M} and the projections on D^{\perp} and D_{θ} by P_{1} and P_{2} respectively. Then for any vector field $X \in \Gamma(T M)$, we can write as

$$
\begin{equation*}
X=P_{1} X+P_{2} X+\eta(X) \xi \tag{3.1}
\end{equation*}
$$

Now applying ϕ on both sides of equation (3.1), we obtain

$$
\phi X=\phi P_{1} X+\phi P_{2} X,
$$

that is,

$$
\begin{equation*}
P X+N X=N P_{1} X+P P_{2} X+N P_{2} X \tag{3.2}
\end{equation*}
$$

We can easily to see

$$
\begin{gather*}
\phi P_{1} X=N P_{1} X, \quad T P_{1} X=0, \quad \phi P_{2} X=T P_{2} X+N P_{2} X \tag{3.4}\\
T P_{2} X \in \Gamma\left(D_{\theta}\right)
\end{gather*}
$$

If we denote the orthogonal complementary of $\phi T M$ in $D^{\perp} M$ by μ, then the normal bundle $T^{\perp} M$ can be decomposed as follows

$$
\begin{equation*}
T^{\perp} M=N\left(D^{\perp}\right) \oplus N\left(D_{\theta}\right) \oplus \mu \tag{3.6}
\end{equation*}
$$

where μ is an invariant subbundle of $T^{\perp} M$ as $N\left(D^{\perp}\right)$ and $N\left(D_{\theta}\right)$ are orthogonal distribution on M. Indeed, $g(Z, X)=0$ for each $Z \in \Gamma\left(D^{\perp}\right)$ and $X \in \Gamma\left(D_{\theta}\right)$. Thus, by equation (2.1) and (3.5), we can write

$$
\begin{equation*}
g(N Z, N X)=g(\phi Z, \phi X)=g(Z, X)=0 \tag{3.7}
\end{equation*}
$$

that is, the distributions $N\left(D^{\perp}\right)$ and $N\left(D_{\theta}\right)$ are mutually perpendicular. In fact, the decomposition (3.6) is an orthogonal direct decomposition.
Theorem 3.1. Let M be a slant submanifold of a nearly (ε, δ)-trans-Sasakian manifold \bar{M} such that $\xi \in T M$. Then M is slant if and only if there exists a constant $\lambda \in[0,1]$ such that

$$
\begin{equation*}
T^{2}=-\lambda\{I-\varepsilon \eta \otimes \xi\} \tag{3.8}
\end{equation*}
$$

Furthermore, in such a case if θ is the slant angle of M, then $\lambda=\cos ^{2} \theta$.
Proof. Let M be a slant submanifold of a nearly (ε, δ)-trans-Sasakian manifold \bar{M} with slant angle $\theta, \xi \in T M$. Then

$$
\begin{equation*}
\cos \theta=\frac{g(T X, \phi X)}{\|T X\|\|\phi X\|}=\frac{\|T X\|}{\|\phi X\|}=\text { constant } \tag{3.9}
\end{equation*}
$$

for $X \in T M$. In this case, from (3.9) we have

$$
\begin{equation*}
\cos \theta\|\phi X\|=\|T X\| \tag{3.10}
\end{equation*}
$$

If we take the square (3.10) we get

$$
\begin{equation*}
g(T X, T X)=g(\phi X, \phi X) \cos ^{2} \theta \tag{3.11}
\end{equation*}
$$

Moreover,
(3.12) $\cos \theta=\frac{g(T X, \phi X)}{\|T X|\|| | \phi X\|}=\frac{g(\phi X, T X)}{\|T X \mid\| \phi X \|}=-\frac{g(X, \phi T X)}{\|T X|\|| | \phi X\|}=-\frac{g\left(X, T^{2} X\right)}{\|T X|\|| | \phi X\|}$
for all vector field X. Then from (2.1), (3.9) and (3.12) we find

$$
\cos ^{2} \theta\{g(X-\varepsilon \eta(X) \xi, X)\}=-g\left(T^{2} X, X\right)
$$

In this case, we have

$$
T^{2} X=-\cos ^{2} \theta\{X-\varepsilon \eta(X) \xi, X\}
$$

for any vector field $X \in T M$. That is, for all $X \in T M$

$$
\begin{equation*}
T^{2}=-\lambda\{I-\varepsilon \eta \otimes \xi\}, \quad \lambda=\cos ^{2} \theta \tag{3.13}
\end{equation*}
$$

Conversely, we now assume that the (3.8) holds. Then from (2.2) and (2.8) we obtain
$\cos \theta=\frac{g(T X, \phi X)}{\|T X \mid\|\|\phi X\|}=\frac{g\left(T^{2} X, X\right)}{\|T X|\|| | \phi X\|}=-\frac{-\lambda g(X-\varepsilon \eta(X) \xi, X)}{\|T X\|\|\phi X\|}=-\lambda \frac{\|\phi X\|}{\|T X\|}$.
Also by using (3.9), we conclude that

$$
\begin{equation*}
\lambda=\cos ^{2} \theta \tag{3.14}
\end{equation*}
$$

where θ is constant because λ is a constant, and so M is slant.
Corollary 3.1. Let M be a slant submanifold of a nearly (ε, δ)-trans-Sasakian manifold \bar{M} with slant angle θ. Then for any $X, Y \in T M$ we have

$$
\begin{align*}
& g(T X, T Y)=\cos ^{2} \theta(g(X, Y)-\varepsilon \eta(X) \eta(Y)) \tag{3.15}\\
& g(N X, N Y)=\sin ^{2} \theta(g(X, Y)-\varepsilon \eta(X) \eta(Y)) \tag{3.16}
\end{align*}
$$

Proof. For any $X, Y \in T M$, we have

$$
g(T X, T Y)=-g\left(X, T^{2} Y\right)
$$

Then by virtue of (3.8), we obtain (3.15). The proof of (3.16) follows from (2.2) and (2.8).

4. Totally umbilical pseudo-slant submanifolds

Theorem 4.1. Let M be a totally umbilical pseudo-slant submanifold of a nearly (ε, δ)-trans-Sasakian manifold \bar{M}. Then at least one of the following statements is true.
(i) $\operatorname{dim}\left(D^{\perp}\right)=1$,
(ii) $H \in \Gamma(\mu)$,
(iii) M is a proper pseudo-slant submanifold.

Proof. Let $Z \in \Gamma\left(D^{\perp}\right)$ and using (2.3), we obtain

$$
\begin{gathered}
\left(\bar{\nabla}_{Z} \phi\right) Z=\alpha\{g(Z, Z) \xi-\varepsilon \eta(Z) Z\}-\beta \delta \eta(Z) \phi Z \\
\bar{\nabla}_{Z} N Z-\phi\left(\bar{\nabla}_{Z} Z+h(Z, Z)\right)=\alpha\{g(Z, Z) \xi-\varepsilon \eta(Z) Z\}-\beta \delta \eta(Z) \phi Z
\end{gathered}
$$

From the last equation, we have

$$
\begin{gather*}
\quad-A_{N Z} Z+\nabla \frac{1}{Z} N Z-N \nabla_{Z} Z-t h(Z, Z)-n h(Z, Z) \tag{4.1}\\
=\alpha\{g(Z, Z)(T \xi+N \xi)-\varepsilon \eta(Z) Z\}-\beta \delta \eta(Z)(T Z+N Z) .
\end{gather*}
$$

From (2.12) and from the tangential components of (4.1), we obtain

$$
\begin{equation*}
-A_{N Z} Z-\operatorname{th}(Z, Z)=\alpha g(Z, Z) T \xi-\alpha \varepsilon \eta(Z) Z-\beta \delta \eta(Z) T Z \tag{4.2}
\end{equation*}
$$

Taking the product by $W \in \Gamma\left(D^{\perp}\right)$, we obtain

$$
g\left(A_{N Z} Z+\operatorname{th}(Z, Z)+\alpha g(Z, Z) T \xi-\alpha \varepsilon \eta(Z) Z-\beta \delta \eta(Z) T Z, W\right)=0 .
$$

It implies that

$$
\begin{gather*}
g(h(Z, W), N Z)+g(t h(Z, Z), W)+\alpha g(Z, Z) g(T \xi, W) \tag{4.3}\\
-\alpha \varepsilon \eta(Z) g(Z, W)-\beta \delta \eta(Z) g(T Z, W)=0
\end{gather*}
$$

Since M is a totally umbilical submanifold, we obtain

$$
\begin{align*}
& g(Z, W) g(H, N Z)+g(Z, Z) g(t H, W)+\alpha g(Z, Z) g(T \xi, W) \tag{4.4}\\
& -\alpha \varepsilon g(Z, \xi) g(Z, W)+\beta \delta g(Z, \xi) g(Z, W)=0
\end{align*}
$$

that is
(4.5) $g(t H, Z) W+g(t H, W) Z+\alpha g(T \xi, W) Z-\alpha \varepsilon \eta(Z) W+\beta \delta \eta(Z) W=0$.

Here $t H$ is either zero or Z and W are linearly dependent vector fields. If $t H=0$, then $\operatorname{dim} \Gamma\left(D^{\perp}\right)=1$. Otherwise $H \in \Gamma(\mu)$. Since $D_{\theta}=0, M$ is a pseudo-slant submanifold. Since $\theta=0$ and $d_{1} \cdot d_{2}=0, M$ is a proper pseudoslant submanifold.

Theorem 4.2. Let M be a totally umbilical proper pseudo-slant submanifold of a nearly (ε, δ)-trans-Sasakian manifold \bar{M}. Then M is neither a totally geodesic submanifold nor an anti-invariant if $H, \nabla \frac{\perp}{X} H \in \Gamma(\mu)$.
Proof. Since the ambient space is a nearly quasi-Sasakian manifold, by using (2.3) we have for any $X \in \Gamma(T M)$,

$$
\begin{align*}
\left(\bar{\nabla}_{X} \phi\right) X & =\alpha\{g(X, X) \xi-\varepsilon \eta(X) X\}-\beta \delta \eta(X) \phi X, \\
\bar{\nabla}_{X} \phi X-\phi \bar{\nabla}_{X} X & =\alpha\{g(X, X) \xi-\varepsilon \eta(X) X\}-\beta \delta \eta(X) \phi X . \tag{4.6}
\end{align*}
$$

Using (2.5), (2.7), (2.8) and (2.12) in (4.6), we get

$$
\begin{aligned}
& \nabla_{X} T X+g(X, T X) H-A_{N X} X+\nabla \frac{1}{X} N X \\
= & \phi \nabla_{X} X+g(X, X) \phi H+\alpha\{g(X, X) \xi-\varepsilon \eta(X) X\} \\
& -\beta \delta \eta(X) T X-\beta \delta \eta(X) N X .
\end{aligned}
$$

Applying product ϕH to the above equation we get

$$
\begin{align*}
g\left(\nabla_{X}^{\perp} N X, \phi H\right)= & g\left(N \nabla_{X} X, \phi H\right)+g(X, X)\|H\|^{2} \tag{4.8}\\
& +\alpha g(X, X) g(N \xi, \phi H)-\beta \delta \eta(X) g(N X, \phi H) .
\end{align*}
$$

Taking into account (2.6), we get

$$
\begin{align*}
g\left(\bar{\nabla}_{X}^{\perp} N X, \phi H\right)= & g(X, X)\|H\|^{2}+\alpha g(X, X) g(N \xi, \phi H) \tag{4.9}\\
& -\beta \delta \eta(X) \eta(X) g(N \xi, \phi H) .
\end{align*}
$$

Now, for any $X \in \Gamma(T M)$, we obtain

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) H=\bar{\nabla}_{X} \phi H-\phi \bar{\nabla}_{X} H . \tag{4.10}
\end{equation*}
$$

In view of $(2.6),(2.8),(2.9),(2.17)$ and (4.10) we obtain
(4.11) $-A_{\phi H} X+\nabla \frac{\perp}{X} \phi H=\left(\bar{\nabla}_{X} \phi\right) H-T A_{H} X-N A_{H} X+t \nabla \frac{\perp}{X} H+n \nabla \frac{\perp}{X} H$.

Applying product $N X$ to the above equation we get

$$
\begin{gathered}
g\left(\nabla \frac{\perp}{X} \phi H, N X\right)=g\left(\left(\bar{\nabla}_{X} \phi\right) H, N X\right)-g\left(N A_{H} X, N X\right), \\
g\left(\bar{\nabla}_{X} \phi H, N X\right)=g\left(\left(\nabla_{X} n\right) H+h(t H, X)+N A_{H} X, N X\right)-g\left(N A_{H} X, N X\right) .
\end{gathered}
$$

By using (2.7), (2.17) and (3.16), we have

$$
g\left(\bar{\nabla}_{X} \phi H, N X\right)=-\sin ^{2} \theta\left\{g(X, X)\|H\|^{2}-g(h(X, \xi), H) \eta(X)\right\} .
$$

From (2.15), we obtain

$$
\begin{align*}
& g\left(\bar{\nabla}_{X} \phi H, N X\right)=-\sin ^{2} \theta\left\{g(X, X)\|H\|^{2}-g(-\varepsilon \alpha N X, H) \eta(X)\right\} \\
& g\left(\bar{\nabla}_{X} N X, \phi H\right)=-\sin ^{2} \theta\left\{g(X, X)\|H\|^{2}+\varepsilon \alpha g(N X, H) \eta(X)\right\} . \tag{4.12}
\end{align*}
$$

Thus, (4.9) and (4.12) imply

$$
\begin{aligned}
& g(X, X)\|H\|^{2}+\alpha g(X, X) g(N \xi, \phi H)-\beta \delta \eta(X) g(N X, \phi H) \\
= & \sin ^{2} \theta\left\{g(X, X)\|H\|^{2}\right\},
\end{aligned}
$$

$$
\begin{equation*}
\cos ^{2} \theta g(X, X)\|H\|^{2}+\alpha g(X, X) g(N \xi, \phi H)-\beta \delta \eta(X) g(N X, \phi H)=0 \tag{4.13}
\end{equation*}
$$

Since M is a proper pseudo-slant submanifold of nearly (ε, δ)-trans-Sasakian manifold, we can not obtain $H=0$. This tells us that M is not totally geodesic in \bar{M}.

Theorem 4.3. Let M be a totally umbilical proper pseudo-slant submanifold of a nearly (ε, δ)-trans-Sasakian manifold \bar{M}. Then at least one of the following statements is true.
(i) $H \in \mu$,
(ii) $g\left(\nabla_{T X} \xi, X\right)=0$,
(iii) $\eta\left(\left(\nabla_{X} T\right) X\right)=0$,
(iv) M is an anti-invariant submanifold,
(v) If M is a proper slant submanifold, then $\operatorname{dim}(M)>3$ for any $X \in$ $\Gamma(T M)$.

Proof. From equation (2.3) and M is a nearly (ε, δ)-trans-Sasakian manifold, we have

$$
\bar{\nabla}_{X} \phi X-\phi \bar{\nabla}_{X} X=\alpha\{g(X, X) \xi-\varepsilon \eta(X) X\}-\beta \delta \eta(X) \phi X
$$

By using (2.5), (2.6), (2.8) and (2.9), we have

$$
\begin{align*}
& \nabla_{X} T X+h(X, T X)-A_{N X} X+\nabla_{X}^{\perp} N X-T \nabla_{X} X \tag{4.14}\\
& -N \nabla_{X} X-\operatorname{th}(X, X)-n h(X, X) \\
= & \alpha\{g(X, X) \xi-\varepsilon \eta(X) X\}-\beta \delta \eta(X) \phi X .
\end{align*}
$$

Taking the tangential components of (4.14), we obtain
(4.15) $\nabla_{X} T X-T \nabla_{X} X-\operatorname{th}(X, X)-A_{N X} X=-\alpha \varepsilon \eta(X) X-\beta \delta \eta(X) T X$.

Since M is a totally umbilical pseudo-slant submanifold, by using (2.7) and (2.17), we can write

$$
\begin{equation*}
g\left(A_{N X} X, X\right)=0 \tag{4.16}
\end{equation*}
$$

If $H \in \Gamma(\mu)$, then from (4.15), we obtain

$$
\nabla_{X} T X-T \nabla_{X} X=-\alpha \varepsilon \eta(X) X-\beta \delta \eta(X) T X
$$

Taking the product of (4.16) by ξ, we obtain

$$
\begin{gather*}
g\left(\nabla_{X} T X, \xi\right)-\eta\left(T \nabla_{X} X\right)=-\alpha \varepsilon \eta(X) \eta(X)-\beta \delta \eta(X) \eta(T X) \\
g\left(\nabla_{X} T X, \xi\right)=0 \tag{4.17}
\end{gather*}
$$

Interchanging X by $T X$ in (4.17), we derive

$$
g\left(\nabla_{T X} T^{2} X, \xi\right)=0 \Rightarrow g\left(\nabla_{T X} \xi, T^{2} X\right)=0
$$

By using (3.1), we have

$$
g\left(\nabla_{T X} \xi,-\cos ^{2} \theta(X-\eta(X) \xi)\right)=0 \quad \Rightarrow \quad \cos ^{2} \theta g\left(\nabla_{T X} \xi,(X-\eta(X) \xi)\right)=0
$$

Since, M is a proper pseudo-slant submanifold, we have

$$
g\left(\nabla_{T X} \xi,(X-\eta(X) \xi)=0\right.
$$

from which

$$
\begin{equation*}
g\left(\nabla_{T X} \xi, X\right)=\eta(X) g\left(\nabla_{T X} \xi, \xi\right) \tag{4.18}
\end{equation*}
$$

Now, we have $g(\xi, \xi)=1$. Taking the covariant derivative of above equation with respect to $T X$ for any $X \in \Gamma(T M)$, we obtain $g\left(\nabla_{T X} \xi, \xi\right)+g\left(\xi, \nabla_{T X} \xi\right)=$ 0 , which implies $g\left(\nabla_{T X} \xi, \xi\right)=0$ and then (4.18) gives

$$
\begin{equation*}
g\left(\nabla_{T X} \xi, X\right)=0 \tag{4.19}
\end{equation*}
$$

This proves (ii) of theorem.
Now, interchanging X by $T X$ in the equation (4.19), we derive

$$
\begin{gathered}
g\left(\nabla_{T^{2} X} \xi, T X\right)=g\left(\nabla_{\cos ^{2} \theta(-X+\eta(X) \xi)} \xi, T X\right)=0 \\
\cos ^{2} \theta g\left(\nabla_{(-X+\eta(X) \xi)} \xi, T X\right)=0 \\
-\cos ^{2} \theta g\left(\nabla_{X} \xi, T X\right)+\cos ^{2} \theta \eta(X) g\left(\nabla_{\xi} \xi, T X\right)=0
\end{gathered}
$$

Since $\nabla_{\xi} \xi=0$, we obtain

$$
\begin{equation*}
\cos ^{2} \theta g\left(\nabla_{X} \xi, T X\right)=0 \tag{4.20}
\end{equation*}
$$

From (4.20), if $\cos \theta=0, \theta=\pi / 2$, then M is an anti-invariant submanifold. On the other hand, $g\left(\nabla_{X} \xi, T X\right)=0$, that is, $\nabla_{X} \xi=0$. This implies that ξ is a the Killing vector field on M. If the vector field ξ is not Killing, then we can take at least two linearly independent vectors X and $P X$ to span D_{θ}, that is, the $\operatorname{dim}(M)>3$.

5. Integrability of distributions

Theorem 5.1. Let M be a pseudo-slant submanifold of a nearly (ε, δ)-transSasakian manifold \bar{M}. Then we have

$$
\begin{align*}
A_{\phi Y} X-A_{\phi X} Y= & -\alpha \varepsilon g(X, Y) \xi-\beta \delta g(\phi X, Y) \xi-\nabla_{X}(T Y) \tag{5.1}\\
& -h(X, T Y)+A_{N Y} X-\nabla_{X}^{\perp}(N Y)+T\left(\nabla_{X} Y\right) \\
& +N\left(\nabla_{X} Y\right)+N(h(X, Y))
\end{align*}
$$

for all $X, Y \in D^{\perp}$.
Proof. In view of (2.7), we get

$$
\begin{equation*}
g\left(A_{\phi Y} X, Z\right)=g(h(X, Z), \phi Y)=-g(\phi h(X, Z), Y) \tag{5.2}
\end{equation*}
$$

From (2.5) and (5.2), since $\phi \nabla_{Z} X \in T^{\perp} M$ we get

$$
\begin{align*}
g\left(A_{\phi Y} X, Z\right) & =-g\left(\phi \bar{\nabla}_{Z} X, Y\right)+g\left(\phi \nabla_{Z} X, Y\right) \tag{5.3}\\
& =-g\left(\phi \bar{\nabla}_{Z} X, Y\right) \\
& =-g\left(\bar{\nabla}_{Z} \phi X, Y\right)+g\left(\left(\bar{\nabla}_{Z} \phi\right) X, Y\right) .
\end{align*}
$$

Now, for $X \in D_{1}, \phi X \in T^{\perp} M$. Hence, from (2.6) we have

$$
\begin{equation*}
\bar{\nabla}_{Z} \phi X=-A_{\phi X} Z+\nabla \frac{1}{Z} \phi X \tag{5.4}
\end{equation*}
$$

Combining (5.3) and (5.4), we obtain

$$
\begin{equation*}
g\left(A_{\phi Y} X, Z\right)=g\left(\left(\bar{\nabla}_{Z} \phi\right) X, Y\right)+g\left(A_{\phi X} Z, Y\right) \tag{5.5}
\end{equation*}
$$

Since $h(X, Y)=h(Y, X)$, if follows from (2.7) that

$$
g\left(A_{\phi X} Z, Y\right)=g\left(A_{\phi X} Y, Z\right)
$$

Hence, from (5.5) we obtain, with the help of (2.3),

$$
\begin{align*}
& g\left(A_{\phi Y} X, Z\right)-g\left(A_{\phi X} Y, Z\right)=2 \alpha \eta(Y) g(X, Z)-\varepsilon \alpha \eta(Z) g(X, Y) \tag{5.6}\\
& -\varepsilon \alpha \eta(X) g(Z, Y)-\beta \delta \eta(Z) g(\phi X, Y)+\eta(X) g(\phi Z, Y)-g\left(\left(\bar{\nabla}_{X} \phi\right) Z, Y\right) \\
= & 2 \alpha \eta(Y) g(X, Z)-\varepsilon \alpha \eta(Z) g(X, Y)-\varepsilon \alpha \eta(X) g(Z, Y)-\beta \delta \eta(Z) g(\phi X, Y) \\
& +\eta(X) g(\phi Z, Y)+g\left(\nabla_{X}(T Y)+h(X, T Y)-A_{N Y} X+\nabla_{X}^{\perp} N Y\right. \\
& \left.-T\left(\nabla_{X} Y\right)-N\left(\nabla_{X} Y\right)-T h(X, Y)-N h(X, Y), Z\right) .
\end{align*}
$$

Since $X, Y, Z \in D^{\perp}$ an orthonormal distribution to the distribution $\langle\xi\rangle$, it follows that $\eta(X)=\eta(Y)=0$. Therefore, the above equation reduces to

$$
\begin{aligned}
A_{\phi Y} X-A_{\phi X} Y= & -\alpha \varepsilon g(X, Y) \xi-\beta \delta g(\phi X, Y) \xi-\nabla_{X}(T Y) \\
& -h(X, T Y)+A_{N Y} X-\nabla_{X}^{\perp}(N Y)+T\left(\nabla_{X} Y\right) \\
& +N\left(\nabla_{X} Y\right)+N(h(X, Y)) .
\end{aligned}
$$

Theorem 5.2. In a pseudo-slant submanifold of a nearly (ε, δ)-trans-Sasakian manifold, we have

$$
\begin{align*}
\left(\nabla_{X} T\right) Y= & A_{N Y} X+A_{N X} Y+\operatorname{th}(X, Y)-\left(\nabla_{Y} T\right) X+T(h(Y, X)) \tag{5.7}\\
& +2 \alpha g(X, Y) \xi-\alpha \varepsilon \eta(Y) X-\alpha \varepsilon \eta(X) Y-\beta \delta \eta(X) T Y \\
& -\beta \delta \eta(Y) T X
\end{align*}
$$

Proof. Let $X, Y \in T M$, we have

$$
\left(\bar{\nabla}_{X} \phi\right) Y=\bar{\nabla}_{X} \phi Y-\phi\left(\bar{\nabla}_{X} Y\right)
$$

From (2.7) and (2.8), we obtain

$$
\bar{\nabla}_{X} T Y+\bar{\nabla}_{X} N Y=\left(\bar{\nabla}_{X} \phi\right) Y+\phi\left(\nabla_{X} Y+h(X, Y)\right)
$$

Also from (2.8) and (2.9), we obtain

$$
\bar{\nabla}_{X} T Y+\bar{\nabla}_{X} N Y=\left(\bar{\nabla}_{X} \phi\right) Y+T\left(\nabla_{X} Y\right)+N\left(\nabla_{X} Y\right)+\operatorname{th}(X, Y)+n h(X, Y)
$$

Using (2.5) and (2.6) from above, we obtain

$$
\begin{align*}
& \nabla_{X} T Y+h(X, T Y)-A_{N Y} X+\nabla_{X}^{\perp} N Y \tag{5.8}\\
= & 2 \alpha g(X, Y) \xi-\alpha \varepsilon \eta(Y) X-\alpha \varepsilon \eta(X) Y-\beta \delta \eta(Y)(T X+N X) \\
& -\beta \delta \eta(X)(T Y+N Y)-\nabla_{Y} T X-h(Y, T X)+A_{N X} Y \\
& -\nabla_{Y}^{\perp} N X+T \nabla_{Y} X+N \nabla_{Y} X+T(h(Y, X))+N(h(Y, X)) \\
& +T \nabla_{X} Y+N \nabla_{X} Y+\operatorname{th}(X, Y)+n h(X, Y) .
\end{align*}
$$

Comparing tangential and normal parts of the above equation, we obtain

$$
\begin{align*}
\nabla_{X} T Y-A_{N Y} X= & 2 \alpha g(X, Y) \xi-\alpha \varepsilon \eta(Y) X-\alpha \varepsilon \eta(X) Y \tag{5.9}\\
& -\beta \delta \eta(Y) T X-\beta \delta \eta(X) T Y-\nabla_{Y} T X+A_{N X} Y \\
& +T\left(\nabla_{Y} X\right)+T\left(h(Y, X)+T \nabla_{X} Y+t h(Y, X) .\right.
\end{align*}
$$

That is,

$$
\begin{align*}
\left(\nabla_{X} T\right) Y= & A_{N Y} X+A_{N X} Y+\operatorname{th}(X, Y)-\left(\nabla_{Y} T\right) X+T(h(Y, X)) \tag{5.10}\\
& +2 \alpha g(X, Y) \xi-\alpha \varepsilon \eta(Y) X-\alpha \varepsilon \eta(X) Y \\
& -\beta \delta \eta(X) T Y-\beta \delta \eta(Y) T X
\end{align*}
$$

Theorem 5.3. Let M be a pseudo-slant submanifolds of a nearly (ε, δ)-transSasakian manifold \bar{M}. Then the anti-invariant distribution D^{\perp} is integrable if and only if
(5.11) $A_{N W} Z+A_{N Z} W+2 T \nabla_{Z} W+2 t h(W, Z)$

$$
=-2 \alpha g(Z, W) \xi+\alpha \varepsilon \eta(W) Z+\alpha \varepsilon \eta(Z) W+\beta \delta \eta(W) T Z+\beta \delta \eta(Z) T W
$$

for any $Z, W \in \Gamma\left(D^{\perp}\right)$.

Proof. Let $Z, W \in \Gamma\left(D^{\perp}\right)$ and using (2.3), we obtain

$$
\begin{aligned}
\left(\bar{\nabla}_{Z} \phi\right) W+\left(\bar{\nabla}_{W} \phi\right) Z= & \alpha\{2 g(Z, W) \xi-\varepsilon \eta(W) Z-\varepsilon \eta(Z) W\} \\
& -\beta \delta\{\eta(W) \phi Z+\eta(Z) \phi W\}
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& \bar{\nabla}_{Z} \phi W-\phi \bar{\nabla}_{Z} W+\bar{\nabla}_{W} \phi Z-\phi \bar{\nabla}_{W} Z \\
= & \alpha\{2 g(Z, W) \xi-\varepsilon \eta(W) Z-\varepsilon \eta(Z) W\}-\beta \delta\{\eta(W) \phi Z+\eta(Z) \phi W\} .
\end{aligned}
$$

By using (2.5), (2.6), (2.8) and (2.9), we obtain

$$
\begin{aligned}
& \alpha\{2 g(Z, W) \xi-\varepsilon \eta(W) Z-\varepsilon \eta(Z) W\}-\beta \delta\{\eta(W) \phi Z+\eta(Z) \phi W\} \\
= & \bar{\nabla}_{Z} N W-T \nabla_{Z} W-N \nabla_{Z} W-\operatorname{th}(W, Z)-n h(W, Z) \\
& +\bar{\nabla}_{W} N Z-T \nabla_{W} Z-N \nabla_{W} Z-\operatorname{th}(W, Z)-n h(W, Z) .
\end{aligned}
$$

So we have

$$
\begin{aligned}
& \alpha\{2 g(Z, W) \xi-\varepsilon \eta(W) Z-\varepsilon \eta(Z) W\}-\beta \delta\{\eta(W) \phi Z+\eta(Z) \phi W\} \\
= & -A_{N W} Z+\nabla \frac{1}{Z} N W-T \nabla_{Z} W-N \nabla_{Z} W-2 t h(W, Z)-A_{N Z} W \\
& +\nabla_{W}^{\perp} N Z-T \nabla_{W} Z-N \nabla_{W} Z-2 n h(W, Z) .
\end{aligned}
$$

Corresponding the tangential components of the last equation, we conclude

$$
\begin{aligned}
& -2 \alpha g(Z, W) \xi+\alpha \varepsilon \eta(W) Z+\alpha \varepsilon \eta(Z) W+\beta \delta \eta(W) T Z+\beta \delta \eta(Z) T W \\
= & A_{N W} Z+T \nabla_{Z} W+2 t h(W, Z)+A_{N Z} W+T \nabla_{W} Z
\end{aligned}
$$

From the above equation, we can infer

$$
\begin{gathered}
-2 \alpha g(Z, W) \xi+\alpha \varepsilon \eta(W) Z+\alpha \varepsilon \eta(Z) W+\beta \delta \eta(W) T Z+\beta \delta \eta(Z) T W \\
=A_{N W} Z+A_{N Z} W+2 T \nabla_{Z} W-T\left(\nabla_{Z} W-\nabla_{W} Z\right)+2 t h(W, Z), \\
T[Z, W]= \\
-A_{N W} Z-A_{N Z} W-2 T \nabla_{W} Z-2 t h(W, Z)-2 \alpha g(Z, W) \xi \\
\\
+\alpha \varepsilon \eta(W) Z+\alpha \varepsilon \eta(Z) W+\beta \delta \eta(W) T Z+\beta \delta \eta(Z) T W .
\end{gathered}
$$

Thus $[Z, W] \in \Gamma\left(D^{\perp}\right)$ if and only if (5.11) is satisfied.
Theorem 5.4. Let M be a pseudo-slant submanifold of a nearly (ε, δ)-transSasakian manifold \bar{M}. Then the slant distribution D_{θ} is integrable if and only if

$$
\begin{align*}
& P_{1}\left\{\nabla_{X} T Y-T \nabla_{X} Y+\left(\nabla_{Y} T\right) X-A_{N X} Y-A_{N Y} X-2 \operatorname{th}(X, Y)\right. \tag{5.12}\\
& +\alpha \varepsilon \eta(Y) X+\alpha \varepsilon \eta(X) Y+\beta \delta \eta(X) T Y+\beta \delta \eta(Y) T X\}=0
\end{align*}
$$

for any $X, Y \in \Gamma\left(D_{\theta}\right)$.
Proof. For any $X, Y \in \Gamma\left(D_{\theta}\right)$ and we denote the projections on D^{\perp} and D_{θ} by P_{1} and P_{2} respectively. Then for any vector fields $X, Y \in \Gamma\left(D_{\theta}\right)$, by using equation (2.4), we obtain

$$
\left(\bar{\nabla}_{X} \phi\right) Y+\left(\bar{\nabla}_{Y} \phi\right) X=\alpha\{2 g(X, Y) \xi-\varepsilon \eta(Y) X-\varepsilon \eta(X) Y\}
$$

$$
-\beta \delta\{\eta(Y) \phi X+\eta(X) \phi Y\}
$$

or

$$
\begin{aligned}
& \bar{\nabla}_{X} \phi Y-\phi \bar{\nabla}_{X} Y+\bar{\nabla}_{Y} \phi X-\phi \bar{\nabla}_{Y} X \\
= & \alpha\{2 g(X, Y) \xi-\varepsilon \eta(Y) X-\varepsilon \eta(X) Y\}-\beta \delta\{\eta(Y) \phi X+\eta(X) \phi Y\} .
\end{aligned}
$$

By using equations (2.5), (2.6), (2.8), and (2.9), we can write

$$
\begin{aligned}
& \bar{\nabla}_{X} T Y+\bar{\nabla}_{X} N Y-\phi\left(\nabla_{X} Y+h(X, Y)\right)+\bar{\nabla}_{Y} T X+\bar{\nabla}_{Y} N X \\
& -\phi\left(\nabla_{Y} X+h(X, Y)\right) \\
= & \alpha\{2 g(X, Y) \xi-\varepsilon \eta(Y) X-\varepsilon \eta(X) Y\}-\beta \delta\{\eta(Y) \phi X+\eta(X) \phi Y\},
\end{aligned}
$$

$$
\begin{align*}
& \nabla_{X} T Y+h(X, T Y)-A_{N Y} X+\nabla_{X}^{\perp} N Y-T \nabla_{X} Y-N \nabla_{X} Y \tag{5.13}\\
& -\operatorname{th}(X, Y)-n h(X, Y)+\nabla_{Y} T X+h(Y, T X)-A_{N X} Y \\
& +\nabla_{Y}^{\perp} N X-T \nabla_{Y} X-N \nabla_{Y} X-\operatorname{th}(X, Y)-n h(X, Y) \\
= & \alpha\{2 g(X, Y) \xi-\varepsilon \eta(Y) X-\varepsilon \eta(X) Y\}-\beta \delta\{\eta(Y) \phi X+\eta(X) \phi Y\} .
\end{align*}
$$

Tangential components of (5.13) reach

$$
\begin{align*}
& \nabla_{X} T Y-T \nabla_{X} Y+\left(\nabla_{Y} T\right) X-A_{N} X Y-A_{N} Y X-2 \operatorname{th}(X, Y) \tag{5.14}\\
= & -\alpha \varepsilon \eta(Y) X-\alpha \varepsilon \eta(X) Y-\beta \delta \eta(X) T Y-\beta \delta \eta(Y) T X,
\end{align*}
$$

$$
\begin{align*}
T[X, Y]= & \nabla_{X} T Y-T \nabla_{X} Y+\left(\nabla_{Y} T\right) X-A_{N X} Y-A_{N Y} X \tag{5.15}\\
& -2 \operatorname{th}(X, Y)+\alpha \varepsilon \eta(Y) X+\alpha \varepsilon \eta(X) Y \\
& +\beta \delta \eta(X) T Y+\beta \delta \eta(Y) T X .
\end{align*}
$$

Applying P_{1} to (5.15), we get (5.12).
Theorem 5.5. Let M be a pseudo-slant submanifold of a nearly (ε, δ)-transSasakian manifold \bar{M}. Then the distribution $D^{\perp} \oplus \xi$ is integrable if and only if

$$
\begin{aligned}
3\left\{A_{\phi Z} W-A_{\phi W} Z\right\}= & 2 \alpha(1-\varepsilon)\{\eta(W) Z-\eta(Z) W\} \\
& -\beta \delta\{\eta(T W) Z-\eta(T Z) W+\eta(W) T Z-\eta(Z) T W\}
\end{aligned}
$$

for any $Z, W \in \Gamma\left(D^{\perp} \oplus \xi\right)$.
Proof. For any $Z, W \in \Gamma\left(D^{\perp} \oplus \xi\right)$ and $U \in \Gamma(T M)$, by using (2.7), we can write

$$
2 g\left(A_{\phi Z} W, U\right)=g(h(U, W), \phi Z)+g(h(U, W), \phi Z)
$$

By using (2.5), we have

$$
\begin{aligned}
2 g\left(A_{\phi Z} W, U\right) & =g\left(\bar{\nabla}_{W} U, \phi Z\right)+g\left(\bar{\nabla}_{U} W, \phi Z\right) \\
& =-g\left(\phi \bar{\nabla}_{W} U, Z\right)-g\left(\phi \bar{\nabla}_{U} W, Z\right) .
\end{aligned}
$$

So we have

$$
2 g\left(A_{\phi Z} W, U\right)=-g\left(\bar{\nabla}_{W} \phi U, Z\right)-g\left(\bar{\nabla}_{U} \phi W, Z\right)
$$

$$
+g\left(\left(\bar{\nabla}_{W} \phi\right) U+\left(\bar{\nabla}_{U} \phi\right) W, Z\right)
$$

By using equation (2.3), we obtain

$$
\begin{aligned}
2 g\left(A_{\phi Z} W, U\right)= & -g\left(\bar{\nabla}_{W} \phi U, Z\right)-g\left(\bar{\nabla}_{U} \phi W, Z\right)+g(\alpha(2 g(W, U) \xi \\
& -\varepsilon \eta(U) W-\varepsilon \eta(W) U\}-\beta \delta\{\eta(U) \phi W+\eta(W) \phi U), Z) \\
= & g\left(\bar{\nabla}_{W} Z, \phi U\right)-g\left(-A_{\phi W} U, Z\right)+g(\alpha(2 g(W, U) \xi \\
& -\varepsilon \eta(U) W-\varepsilon \eta(W) U\}-\beta \delta\{\eta(U) \phi W+\eta(W) \phi U), Z) \\
= & -g\left(T \nabla_{W} Z+t h(Z, W), U\right)+g\left(A_{\phi W} Z, U\right)+2 \alpha g(\eta(W) Z, U) \\
& -\alpha \varepsilon g(\eta(W) Z, U)-\alpha \varepsilon g(\eta(W) Z, U)-\beta \delta g(\eta(T W) Z, U) \\
& -\beta \delta g(\eta(W) T Z, U)
\end{aligned}
$$

which is equivalent to

$$
\begin{align*}
2 A_{\phi Z} W= & 2 \alpha(1-\varepsilon) \eta(W) Z-\beta \delta \eta(T W) Z-\beta \delta \eta(W) T Z \tag{5.16}\\
& -T \nabla_{W} Z-\operatorname{th}(Z, W)+A_{\phi W} Z .
\end{align*}
$$

Take $Z=W$ in (5.16), we infer

$$
\begin{align*}
2 A_{\phi W} Z= & 2 \alpha(1-\varepsilon) \eta(Z) W-\beta \delta \eta(T Z) W-\beta \delta \eta(T) T W \tag{5.17}\\
& -T \nabla_{Z} W-\operatorname{th}(W, Z)+A_{\phi Z} W .
\end{align*}
$$

By using equation (5.16) and (5.17), we obtain

$$
\begin{aligned}
3\left\{A_{\phi Z} W-A_{\phi W} Z\right\}= & 2 \alpha(1-\varepsilon)\{\eta(W) Z-\eta(Z) W\} \\
& -\beta \delta\{\eta(T W) Z-\eta(T Z) W+\eta(W) T Z-\eta(Z) T W\}
\end{aligned}
$$

Thus the distribution $D^{\perp} \oplus \xi$ is integrable if and only if $T[Z, W]=0$, which proves our assertion.

References

[1] A. Bejancu and K. L. Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Internat. J. Math. Math. Sci. 16 (1993), no. 3, 545-556. https://doi.org/10.1155/ S0161171293000675
[2] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasg. Math. J. 42 (2000), no. 1, 125-138. https://doi.org/ 10.1017/S0017089500010156
[3] B.-Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Louvain, 1990.
[4] U. C. De and A. Sarkar, On (ϵ)-Kenmotsu manifolds, Hadronic J. 32 (2009), no. 2, 231-242.
[5] V. A. Khan and M. A. Khan, Pseudo-slant submanifolds of a Sasakian manifold, Indian J. Pure Appl. Math. 38 (2007), no. 1, 31-42.
[6] R. Kumar, R. Rani, and R. K. Nagaich, On sectional curvatures of (ϵ)-Sasakian manifolds, Int. J. Math. Math. Sci. 2007 (2007), Art. ID 93562, 8 pp. https://doi.org/10. 1155/2007/93562
[7] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sr., 39 (1996), 183-198.
[8] N. Papaghiuc, Semi-slant submanifolds of a Kaehlerian manifold, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 40 (1994), no. 1, 55-61.
[9] S. Rahman and N. K. Agrawal, On the geometry of slant and pseudo-slant submanifolds in a quasi Sasakian manifolds, J. Modern Technology and Engineering 2 (2017), no. 1, 82-89.
[10] S. Rahman and J.-B. Jun, CR-submanifolds of a narly (ϵ, δ)-trans Sasakian manifold, Proc. Jangjeon Math. Soc. 19 (2016), no. 4, 717-727.
[11] M. M. Tripathi, E. Erol Kilic, S. Y. Perktas, and S. Keles, Indefinite almost paracontact metric manifolds, Int. J. Math. Math. Sci. 2010 (2010), Art. ID 846195, 19 pp. https: //doi.org/10.1155/2010/846195
[12] X. Xufeng and C. Xiaoli, Two theorems on (ϵ)-Sasakian manifolds, Internat. J. Math. Math. Sci. 21 (1998), no. 2, 249-254. https://doi.org/10.1155/S0161171298000350

Jae-Bok Jun
Department of Mathematics
Faculty of Natural Science
Kookmin University
Seoul 02707, Korea
Email address: jbjun@kookmin.ac.kr
Shamsur Rahman
Department of Mathematics
Maulana Azad National Urdu University
Polytechnic, Darbhanga (Branch)
Bihar 846001, India
Email address: shamsur@rediffmail.com

[^0]: Received August 4, 2018; Revised October 10, 2018; Accepted October 18, 2018.
 2010 Mathematics Subject Classification. 53C15, 53C40, 53D15, 53D10.
 Key words and phrases. nearly (ε, δ)-trans-Sasakian manifold, slant submanifold, proper slant submanifold, pseudo-slant submanifold, totally umbilical proper-slant submanifold.

 Partially supported by Maulana Azad National Urdu University (No.MANUU/Acad/ F.404/2016-17/217).

