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EXTENSION OF HUYGENS TYPE INEQUALITIES FOR

BESSEL AND MODIFIED BESSEL FUNCTIONS

Khaled Mehrez

Abstract. In this note our aim is to extend the Huygens type inequal-

ities to the Bessel and modified Bessel functions of the first kind. Our
main motivation to write this note is a recent publication of Zhu, which

we wish to complement.

1. Introduction

Bessel and modified Bessel functions of the first kind Jν and Iν appear
frequently in various problems of applied mathematics. Because of this their
properties are worth studying also from the point of view of analytic inequali-
ties. For a long list of applications concerning properties involving Bessel and
modified Bessel functions of the first kind, and some other special functions,
we refer to the papers [3, 4, 8–10, 12, 15–17] and to the references therein. The
inequality

(1) 2
sinx

x
+

tanx

x
> 3

which holds for all x ∈ (0, π/2) is known in literature as Huygens’s inequality
[6]. The hyperbolic counterpart of (1) was established in [11] as follows:

(2) 2
sinhx

x
+

tanhx

x
> 3, x > 0.

The inequalities (1) and (2) were respectively refined in [6] as

(3) 2
sinx

x
+

tanx

x
> 2

x

sinx
+

x

tanx
> 3

for 0 < x < π
2 and

(4) 2
sinhx

x
+

tanhx

x
> 2

x

sinhx
+

x

tanhx
> 3, x 6= 0.
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Recently, in [19], Zhu give some new inequalities of the Huygens type for circular
functions, hyperbolic functions, and the reciprocals of circular and hyperbolic
functions, as follows:

Theorem A. The following inequalities

(5) (1− p) x

sinx
+ p

x

tanx
> 1 > (1− q) x

sinx
+ q

x

tanx

hold for all x ∈ (0, π/2) if and only if p ≤ 1/3 and q ≥ 1− 2/π.

Theorem B. The following inequalities

(6) (1− p) sinx

x
+ p

tanx

x
> 1 > (1− q) sinx

x
+ q

tanx

x

hold for all x ∈ (0, π/2) if and only if p ≥ 1/3 and q ≤ 0.

Theorem C. The following inequalities

(7) (1− p) sinhx

x
+ p

tanhx

x
> 1 > (1− q) sinhx

x
+ q

tanhx

x

hold for all x ∈ (0,∞) if and only if p ≤ 1/3 and q ≥ 1.

Theorem D. The following inequalities

(8) (1− p) x

sinhx
+ p

x

tanhx
> 1 > (1− q) x

sinhx
+ q

x

tanhx

hold for all x ∈ (0,∞) if and only if p ≥ 1/3 and q ≤ 0.

In this note, we present a generalizations of inequalities (5) and (6) to Bessel
functions of the first kind. Moreover, we extend and sharpen inequalities (7)
and (8) for the modified Bessel functions of the first kind.

2. Lemmas

In the proof of the main results we will need the following two lemmas. The
first lemma is about the monotonicity of two power series, see [14] for more
details.

Lemma 2.1. Let an and bn (n = 0, 1, 2, . . .) be real numbers, and let the
power series A(x) =

∑∞
n=0 anx

n and B(x) =
∑∞
n=0 bnx

n be convergent for
|x| < R. If bn > 0 for n = 0, 1, . . . , and if (an/bn) is strictly increasing (or
decreasing) for n = 0, 1, 2, . . . , then the function A(x)/B(x) is strictly increas-
ing (or decreasing) on (0, R).

The second lemma is the so-called monotone form of l’Hospital’s rule, see
[2, 7, 13] for a proof.

Lemma 2.2. Let f, g : [a, b]→ R be two continuous functions which are differ-

entiable on (a, b). Further, let g
′ 6= 0 on (a, b). If f

′

g′ is increasing (or decreasing)

on (a, b), then the functions (f(x)−f(a))/(g(x)−g(a)) and (f(x)−f(b))/(g(x)−
g(b)) are also increasing (or decreasing) on (a, b).
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3. Extensions of Huygens type inequalities to Bessel functions

In this section, our aim is to extend the inequalities (5) and (6) to Bessel
functions of the first kind. For this suppose that ν > −1 and consider the
function Jν : R→ (−∞, 1], defined by

Jν(x) = 2νΓ(ν + 1)x−νJν(x) =
∑
n≥

(−1
4

)n
(ν + 1)nn!

x2n,

where Γ is the gamma function, (ν + 1)n = Γ(ν + n + 1)/Γ(ν + 1) for each
n ≥ 0, is the well-known Pochhammer (or Appell) symbol, and Jν defined by

Jν(x) =
∑
n≥0

(−1)n(x/2)ν+2n

n!Γ(ν + n+ 1)
,

stands for the Bessel function of the first kind of order ν. It is worth mentioning
that in particular the function Jν reduces to some elementary functions, like
sine and cosine. More precisely, in particular we have:

(9) J−1/2(x) =
√
π/2.x1/2J−1/2(x) = cosx,

(10) J1/2(x) =
√
π/2.x−1/2J1/2(x) =

sinx

x
,

respectively, which can verified easily by using the series representation of the
function Jν and of the cosine and sine functions, respectively. Taking into
account the relations (9) and (10) as we mentioned above, the inequalities (5)
and (6) can be rewritten in terms of J−1/2(x) and J1/2(x). For example, using
(9) and (10) the inequalities (5) and (6) can be rewritten as

(11) (1− p) 1

J1/2(x)
+ p
J−1/2(x)

J1/2(x)
> 1 > (1− q) 1

J1/2(x)
+ q
J−1/2(x)

J1/2(x)

and

(12) (1− p)J1/2(x) + p
J1/2(x)

J−1/2(x)
> 1 > (1− q)J1/2(x) + q

J1/2(x)

J−1/2(x)

and thus it is natural to ask what is the general form of the inequalities (5)
and (6) for arbitrary ν.

Our first main result reads as follows.

Theorem 3.1. Let ν > −1 and let jν,1 the first positive zero of the Bessel
function Jν of the first kind. Then the Huygens types inequalities

(13) (1− p) 1

Jν+1(x)
+ p

Jν(x)

Jν+1(x)
> 1 > (1− q) 1

Jν+1(x)
+ q

Jν(x)

Jν+1(x)
,

hold for all x ∈ (0, jν,1) if and only if p ≤ ν+1
ν+2 and q ≥ 1− Jν(jν,1).
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Proof. We define the function Fν(x) on (0, jν,1) by

Fν(x) =

1
Jν+1(x) − 1

1
Jν+1(x) −

Jν(x)
Jν+1(x)

=
1− Jν+1(x)

1− Jν(x)
=
hν,1(x)

hν,2(x)
,

where fν,1(x) = 1−Jν+1(x) and fν,2(x) = 1−Jν(x). Now, by again using the
differentiation formula

(14) J ′ν(x) = − x

2(ν + 1)
Jν+1(x)

and the infinite product representation [18, p. 498],

(15) Jν(x) =
∏
n≥1

(
1− x2

j2
ν,n

)
we obtain that

f ′ν,1(x)

f ′ν,2(x)
=

(ν + 1)Jν+2(x)

(ν + 2)Jν+1(x)
= 4(ν + 1)

∑
n≥1

1

j2
ν+1,n − x2

.

Therefore, (
f ′ν,1(x)

f ′ν,2(x)

)′
= 8(ν + 1)

∑
n≥1

x

(j2
ν+1,n − x2)2

.

From this, we deduce that the function
f ′
ν,1(x)

f ′
ν,2(x) is increasing on (0, jν,1). Thus,

the function Fν(x) is also increasing on (0, jν,1) by means of Lemma 2.1. More-
over,

lim
x→0+

Fν(x) =
ν + 1

ν + 2
and lim

x→jν,1
Fν(x) = 1− Jν+1(jν,1).

With this the proof of Theorem 3.1 is complete. �

Theorem 3.2. Let −1 < ν ≤ 0 and let jν,1 the first positive zero of the Bessel
function Jν of the first kind. Then the Huygens type inequalities

(16) (1− p)Jν+1(x) + p
Jν+1(x)

Jν(x)
> 1 > (1− q)Jν+1(x) + q

Jν+1(x)

Jν(x)

hold for all x ∈ (0, jν,1) if and only if p ≥ ν+1
ν+2 and q ≤ 0.

Proof. Let ν > −1, we consider the function

Gν(x) =
1− Jν+1(x)

Jν+1(x)
Jν(x) − Jν+1(x)

, 0 < x < jν,1.

For 0 < x < jν,1, let

gν,1(x) = 1− Jν+1(x) and gν,2(x) =
Jν+1(x)

Jν(x)
− Jν+1(x).
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From the differentiation formula (14), we get

g′ν,1(x)

g′ν,2(x)
=

1

1 + 1
Jν(x)

(
ν+2
ν+1 .

J 2
ν+1(x)

Jν(x)Jν+2(x) − 1

) =
1

1 + Lν(x)
Jν(x)

,

where

Lν(x) =
ν + 2

ν + 1
.
J 2
ν+1(x)

Jν(x)Jν+2(x)
− 1.

On other hand, by using the Turán type inequality [3, Eq. 2.9]

(17) J 2
ν+1(x)− Jν(x)Jν+2(x) > 0,

where ν > −1 and x ∈ (−jν,1, jν,1), we obtain that the function Lν(x) is
positive on (0, jν,1).

Elementary calculations reveal that

L′ν(x) =
(ν + 2)xJν+1(x)

(ν + 1)J 2
ν (x)Jν+2(x)

[
J 2
ν+1(x)

2(ν + 1)
− Jν(x)Jν+2(x)

ν + 2

]
(18)

+
(ν + 2)xJ 2

ν+1(x)Jν+2(x)

2(ν + 3)(ν + 1)Jν(x)J 2
ν+2(x)

.

Using the fact that Jν+1(x) ≥ Jν(x) > 0 for all x ∈ (0, jν,1) and the Turán
type inequality (17), we get

(19) L′ν(x) ≥
−νxJ 3

ν+1(x)

2(ν + 1)2J 2
ν (x)J 2

ν+2(x)
+

(ν + 1)xJ 2
ν+1(x)Jν+3(x)

2(ν + 3)(ν + 1)Jν(x)J 2
ν+2(x)

.

This implies that the function Lν(x) is increasing on (0, jν,1) for all −1 < ν ≤ 0.
In addition, since the function x 7−→ Jν(x) is decreasing ([3, Theorem 3]) on

(0, jν,1), we gave that the function Lν(x)
Jν(x) is increasing too on (0, jν,1), as a

product of two positives increasing functions. Then, the function
g′ν,1(x)

g′ν,2(x) is

decreasing on (0, jν,1). Then, the function

Gν(x) =
gν,1(x)

gν,2(x)
=
gν,1(x)− gν,1(0)

gν,2(x)− gν,2(0)
.

is decreasing on (0, jν,1), from Lemma 2.1.
At the same time, we can write the function Gν(x) in the following form

Gν(x) =
Jν(x)

Jν+1(x)
.Fν(x).

Then,

lim
x→0+

Gν(x) = Fν(0) =
ν + 1

ν + 2
and lim

x→jν,1
Gν(x) = 0,

and with this the proof of inequalities (16) is done. �

Remark 3.3. Since j−1/2,1 = π
2 we find that the inequalities (13) and (16) is a

generalization of inequalities (5) and (6).
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4. Extensions of the Huygens type inequalities to modified Bessel
functions

In this section, we present a generalization of inequalities (7) and (8). For
ν > −1 let us consider the function Iν : R→ [1,∞), defined by

Iν(x) = 2νΓ(ν + 1)x−νIν(x) =
∑
n≥

(
1
4

)n
(ν + 1)nn!

x2n,

where Iν is the modified Bessel function of the first kind defined by

Iν(x) =
∑
n≥0

(x/2)ν+2n

n!Γ(ν + n+ 1)
for all x ∈ R.

It is worth mentioning that in particular we have

(20) I−1/2(x) =
√
π/2.x1/2I−1/2(x) = coshx,

(21) J1/2(x) =
√
π/2.x1/2I−1/2(x) =

sinhx

x
.

Thus, the function Iν is of special interest in this paper because inequalities
(7) and (8) is actually equivalent to

(22) (1− p) I1/2(x) + p
I1/2(x)

I−1/2(x)
> 1 > (1− q) I1/2(x) + q

I1/2(x)

I−1/2(x)

for all x ∈ (0,∞) if and only if p ≤ −1/2+1
−1/2+2 = 1/3 and q ≥ 1, and

(23)

(1− p) 1

I−1/2+1(x)
+ p

I−1/2(x)

I−1/2+1(x)
> 1 > (1− q) 1

I−1/2+1(x)
+ q

I−1/2(x)

I−1/2+1(x)

for all x ∈ (0,∞) if and only if p ≥ −1/2+1
−1/2+2 = 1/3 and q ≤ 0.

In view of inequalities (22) and (23) it is natural to ask: what is the analogue
of this inequalities for modified Bessel functions of the first kind? In order to
answer this question we prove the following results.

Theorem 4.1. Let ν > −1. Then the following inequalities

(24) (1− p) Iν+1(x) + p
Iν+1(x)

Iν(x)
> 1 > (1− q) Iν+1(x) + q

Iν+1(x)

Iν(x)

hold for all x ∈ (0,∞) if and only if p ≤ ν+1
ν+2 and q ≥ 1.

Proof. Let ν > −1, we define the function Hν on (0,∞) by

Hν(x) =
Iν+1(x)− 1

Iν+1(x)− Iν+1(x)
Iν(x)

=
Iν+1(x)Iν(x)− Iν(x)

Iν+1(x)Iν(x)− Iν+1(x)
=
hν,1(x)

hν,2(x)
,
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where hν,1(x) = Iν+1(x)Iν(x)− Iν(x) and hν,2(x) = Iν+1(x)Iν(x)− Iν+1(x).
By using the differentiation formula [18, p. 79]

(25) I ′ν(x) =
x

2(ν + 1)
Iν+1(x)

can easily show that

(26) h′ν,1(x) =
x

2(ν + 1)
I2
ν+1(x) +

x

2(ν + 2)
Iν(x)Iν+2(x)− x

2(ν + 1)
Iν+1(x),

and

(27) h′ν,2(x) =
x

2(ν + 1)
I2
ν+1(x) +

x

2(ν + 2)
Iν(x)Iν+2(x)− x

2(ν + 2)
Iν+2(x).

Using the Cauchy product
(28)

Iµ(x)Iν(x) =
∑
n≥0

Γ(ν + µ+ 2n+ 1)xν+µ+2n

2µ+ν+2nΓ(n+ 1)Γ(ν + µ+ n+ 1)Γ(µ+ n+ 1)Γ(ν + n+ 1)

we obtain

(29) h′ν,1(x) =
∑
n≥0

An(ν)x2n

and

(30) h′ν,2(x) =
∑
n≥0

Bn(ν)x2n,

where
(31)

An(ν) =
Γ(ν + 1) (Γ(ν + 2)Γ(2ν + 2n+ 4)− Γ(2ν + n+ 3)Γ(ν + n+ 3))

22n+1Γ(n+ 1)Γ(ν + n+ 2)Γ(ν + n+ 3)Γ(2ν + n+ 3)

and
(32)

Bn(ν) =
Γ(ν + 2) (Γ(ν + 1)Γ(2ν + 2n+ 4)− Γ(2ν + n+ 3)Γ(ν + n+ 2))

22n+1Γ(n+ 1)Γ(ν + n+ 2)Γ(ν + n+ 3)Γ(2ν + n+ 3)
.

Now, we define the sequence Cn = An
Bn

for n = 0, 1, . . ., thus

Cn(ν) =
Γ(ν + 1) (Γ(ν + 2)Γ(2ν + 2n+ 4)− Γ(2ν + n+ 3)Γ(ν + n+ 3))

Γ(ν + 2) (Γ(ν + 1)Γ(2ν + 2n+ 4)− Γ(2ν + n+ 3)Γ(ν + n+ 2))
.

So, for ν > −1 and n = 0, 1, . . ., we get

Cn+1(ν)

Cn(ν)
=

[Γ(ν + 2)Γ(2ν + 2n+ 6)− Γ(2ν + n+ 4)Γ(ν + n+ 4)]

[Γ(ν + 1)Γ(2ν + 2n+ 6)− Γ(2ν + n+ 4)Γ(ν + n+ 3)]
(33)

× [Γ(ν + 1)Γ(2ν + 2n+ 4)− Γ(2ν + n+ 3)Γ(ν + n+ 2)]

[Γ(ν + 2)Γ(2ν + 2n+ 4)− Γ(2ν + n+ 3)Γ(ν + n+ 3)]

=
K1
n(ν)

K2
n(ν)

,
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where

K1
n(ν) = [Γ(ν + 2)Γ(2ν + 2n+ 6)− Γ(2ν + n+ 4)Γ(ν + n+ 4)]

× [Γ(ν + 1)Γ(2ν + 2n+ 4)− Γ(2ν + n+ 3)Γ(ν + n+ 2)]

= Γ(ν + 1)Γ(ν + 2)Γ(2ν + 2n+ 6)Γ(2ν + 2n+ 4)︸ ︷︷ ︸
A1

− Γ(ν + 2)Γ(2ν + 2n+ 6)Γ(2ν + n+ 3)Γ(ν + n+ 2)︸ ︷︷ ︸
B1

− Γ(ν + 1)Γ(2ν + n+ 4)Γ(ν + n+ 4)Γ(2ν + 2n+ 4)︸ ︷︷ ︸
C1

+ Γ(2ν + n+ 4)Γ(ν + n+ 4)Γ(2ν + n+ 3)Γ(ν + n+ 2)︸ ︷︷ ︸
D1

and

K2
n(ν) = [Γ(ν + 1)Γ(2ν + 2n+ 6)− Γ(2ν + n+ 4)Γ(ν + n+ 3)]

× [Γ(ν + 2)Γ(2ν + 2n+ 4)− Γ(2ν + n+ 3)Γ(ν + n+ 3)]

= Γ(ν + 1)Γ(ν + 2)Γ(2ν + 2n+ 6)Γ(2ν + 2n+ 4)︸ ︷︷ ︸
A1

− Γ(ν + 1)Γ(2ν + 2n+ 6)Γ(2ν + n+ 3)Γ(ν + n+ 3)︸ ︷︷ ︸
B2

− Γ(ν + 2)Γ(2ν + n+ 4)Γ(ν + n+ 3)Γ(2ν + 2n+ 4)︸ ︷︷ ︸
C2

+ Γ(2ν + n+ 4)Γ2(ν + n+ 3)Γ(2ν + n+ 3)︸ ︷︷ ︸
D2

.

Thus

K1
n(ν)−K2

n(ν) = (B2 −B1) + (C2 − C1) + (D1 −D2).

A simple calculation we obtain

B2 −B1 = (n+ 1)Γ(ν + 1)Γ(ν + n+ 2)Γ(2ν + n+ 3)Γ(2ν + 2n+ 6)

and

C2 − C1 = −(n+ 2)Γ(ν + 1)Γ(2ν + 2n+ 4)Γ(2ν + n+ 4)Γ(ν + n+ 3)

and

D1 −D2 = Γ(2ν + n+ 4)Γ(2ν + n+ 3)Γ(ν + n+ 3)Γ(ν + n+ 2) ≥ 0.

Then simple computations lead to

B2 −B1 + (C2 − C1)

= Γ(ν + 1)Γ(2ν + 2n+ 4)Γ(2ν + n+ 3)Γ(ν + n+ 2)

× [(n+ 1)(2ν + 2n+ 5)(2ν + 2n+ 4)− (n+ 2)(2ν + 2n+ 3)(ν + n+ 2)]
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≥ Pn(ν)(n+ 1)Γ(ν + 1)Γ(2ν + 2n+ 4)Γ(2ν + n+ 3)Γ(ν + n+ 2),

where

Pn(ν) = 2ν2 + (4n+ 11)ν + 2n2 + 11n+ 14

= (ν + n+ 2)(2ν + 2n+ 7) > 0

for all ν > −1 and n ∈ N. Therefore, the sequence (Cn)n is increasing, we

obtain that the function
h′
ν,1(x)

h′
ν,2(x) is increasing on (0,∞) too (by Lemma 2.2).

Thus Hν(x) =
hν,1(x)−hν,1(0+)
hν,2(x)−hν,2(0+) is also increasing on (0,∞) by Lemma 2.1. So,

lim
x→0+

Hν(x) = C0(ν) =
ν + 1

ν + 2
,

and using the asymptotic formula [1, p. 377]

Iν(x) =
ex√
2πx

[
1− 4ν2 − 1

1!(8x)
+

(4ν2 − 1)(4ν2 − 9)

2!(8x)2
− · · ·

]
which holds for large values of x and for fixed ν > −1, we obtain

lim
x→∞

Hν(x) = 1.

So, the proof of Theorem 4.1 is complete. �

Theorem 4.2. Let ν > −1. Then the following inequalities

(34) (1− p) 1

Iν+1(x)
+ p

Iν(x)

Iν+1(x)
> 1 > (1− q) 1

Iν+1(x)
+ q

Iν(x)

Iν+1(x)

hold for all x ∈ (0,∞) if and only if p ≥ ν+1
ν+2 and q ≤ 0.

Proof. Let ν > −1 and x ∈ (0,∞), we define the function Φν(x) by

(35) Φν(x) =

1
Iν+1(x) − 1

1
Iν+1(x) −

Iν(x)
Iν+1(x)

=
1− Iν+1(x)

1− Iν(x)
=
ϕν,1(x)

ϕν,2(x)
,

where ϕν,1(x) = 1 − Iν+1(x) and ϕν,2(x) = 1 − Iν(x). By again using the
differentiation formula (25) we get

(36)
ϕ′ν,1(x)

ϕ′ν,2(x)
=
ν + 1

ν + 2
.
Iν+2(x)

Iν+1(x)
=

∑∞
n=0 an(ν)x2n∑∞
n=0 bn(ν)x2n

,

where an(ν) = Γ(ν+2)
22nΓ(n+1)Γ(ν+n+3) and bn(ν) = Γ(ν+1)

22nΓ(n+1)Γ(ν+n+2) . Let

cn(ν) =
an(ν)

bn(ν)
=

ν + 1

ν + n+ 2
for n = 0, 1, . . . .

We conclude that cn(ν) is decreasing for n = 0, 1, . . . and
g′1(x)
g′2(x) is decreasing on

(0,∞) by Lemma 2.1. Thus

Φν(x) =
ϕν,1(x)

ϕν,2(x)
=
ϕν,1(x)− ϕν,1(0)

ϕν,2(x)− ϕν,2(0)
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is decreasing on (0,∞) by Lemma 2.2. Furthermore,

lim
x→0+

Φν(x) = c0(ν) =
ν + 1

ν + 2
,

and
lim
x→∞

Φν(x) = 0.

Alternatively, inequality (34) can be proved by using the Mittag-Leffler expan-
sion for the modified Bessel functions of first kind, which becomes [5, Eq. 7.9.3]

(37)
Iν+1(x)

Iν(x)
=

∞∑
n=1

2x

j2
ν,n + x2

,

where 0 < jν,1 < jν,2 < · · · < jν,n < · · · , are the positive zeros of the Bessel
function Jν , we obtain that

g′1(x)

g′2(x)
= 2(ν + 1)

Iν+2(x)

xIν+1(x)
= 4(ν + 1)

∞∑
n=1

1

j2
ν,n + x2

.

Clearly, (
g′1(x)

g′2(x)

)′
= −8(ν + 1)

∞∑
n=1

x

(x2 + j2
ν,n)2

for all x > 0 and ν > −1, which implies that Gν(x) is decreasing for all ν > −1.
On the other hand, using the Rayleigh formula [18, p. 502]

(38)

∞∑
n=1

1

j2
ν,n

=
1

4(ν + 1)
,

we get

lim
x→0+

Gν(x) =
ν + 1

ν + 2
.

So, the proof of Theorem 4.2 is complete. �

Remark 4.3. Since I− 1
2
(x) = coshx and I 1

2
(x) = sinh x

x , we find that the

inequalities (24) and (34) is the generalization of inequalities (7) and (8).
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