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ON PRIME SUBMODULES OF A FINITELY GENERATED
PROJECTIVE MODULE OVER A COMMUTATIVE RING

REZA NEKOOEI AND ZAHRA POURSHAFIEY

ABSTRACT. In this paper we give a full characterization of prime submod-
ules of a finitely generated projective module M over a commutative ring
R with identity. Also we study the existence of primary decomposition
of a submodule of a finitely generated projective module and character-
ize the minimal primary decomposition of this submodule. Finally, we
characterize the radical of an arbitrary submodule of a finitely gener-
ated projective module M and study submodules of M which satisfy the
radical formula.

0. Introduction

Throughout this paper all rings are commutative with identity and all mod-
ules are unitary. We denote a unique factorization domain by UFD and a
principal ideal domain by PID. Note that in a UFD, a greatest common divisor
(GCD) of any collection of elements always exists. A proper submodule P of
an R-module M is called p-prime if rm € P for r € R and m € M implies
méePorrep=(P:M), where (P: M)={r € R|rM C P}. Let N be a
submodule of M and N = ﬂle N, be a minimal primary decomposition of N
with \/(V; : M) = p;. Then Ass(N) = {p1,...,pr}. The radical of a submod-
ule N in an R-module M, Rad; N, is defined to be the intersection of all prime
submodules of M containing N. If there is no prime submodule containing N,
then Rady; N is defined to be M. In particular, Rady;M = M. Let M be an
R-module and N be a submodule of M. The envelope of N in M is defined to
be the set Ep(N) = {rm|r € R,m € M;r™m € N for some n € N}. We say
that the submodule N of an R-module M satisfies the radical formula in M
(N s.trf. in M) if Radyy N = (Ep(N)). An R-module M is said to satisfy the
radical formula if every submodule of M satisfies the radical formula. Prime
and primary submodules of a finitely generated free module over a PID were
studied in [2,3]. The authors in [2] described prime submodules of a finitely
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generated free module over a UFD and characterized the prime submodules of
a free module of finite rank over a PID. In [5], the authors have given a full
characterization of prime submodules of a finitely generated free R-module F,
where R is an arbitrary commutative ring with identity and they have extended
some results obtained in [2], to a Dedekind domain. Also they studied the ex-
istence of primary decomposition of a submodule of F', where R is an integral
domain, and characterized its minimal primary decomposition and they used
their results in a Dedekind domain. In [6], the authors characterized the radical
of an arbitrary submodule of a finitely generated free R-module F' and study
submodules of F' which satisfy the radical formula. In this paper we give a full
characterization of prime submodules of a finitely generated projective module
M over a commutative ring R with identity. Also we study the existence of
primary decomposition of a submodule of a finitely generated projective mod-
ule M and characterize the minimal primary decomposition of this submodule.
Finally, we characterize the radical of an arbitrary submodule N of a finitely
generated projective module M and study submodules of M which satisfy the
radical formula.

1. Prime submodules of a finitely generated projective module

Let X be a subset of an R-module M. We denote the submodule of M that

X generates, by (X) or RX. We use the notation R™ for R&® --- @ R. Let m
n-times

and n be positive integers, A € M,,,«,(R) and F be the free R-module R™. We
shall use the notation (A) := (Ay,..., Ay,) for the submodule N of F' generated
by the rows Ay, ..., A, of the matrix A and the notation (r1,...,rm)A, 7 € R,
for any element of N. Let B € M,,xm(R). We denote the adjoint matrix of
B by B’, so that BB’ = B’'B = (det B)I,,, where I, is the m x m identity
matrix.

Lemma 1.1. Let R be a commutative ring with identity and M be a finitely
generated projective R-module. Then there exist n € N and a matriz A €
My xn(R) such that M ~ (A).

Proof. Let M = (x1,...,2,). There exists an epimorphism ® : R" — M
with ®(e;) = x;, where ¢; = (0,...,0,1,0,...,0) € R™ with 1 as the ith
component. Projectivity of M gives a monomorphism ¥ : M — R™ with
®W = 1,,. Now there exists a unique expression ¥(x;) = Z?Zl ri;e; for each
z; (1 <i<n). Let A=[ry] € Mpxn(R). Since for every t; € R (1 <i < n),
Ul tizg) = (t1, ..., tn)A, we get U(M) = (A) and hence M ~ (A). O

In the rest of this paper we use the following notations.
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i) Let T; = (ti1,...,tin) € F = R" forsome t;; € R, 1 <i<m,1<j<n
We put

t11r tiz o tip
tor  tog - top

B=[T\---Tp) = : : : : € Mpxn(R).
tml tm2 T tmn

Thus the jth row of the matrix [T} - - - T},,] consists of the components of element
T; in . We use W to be a non-zero submodule of F' with generating set
E={Ti = (ta,...,tin) € F|i € Q}, where Q(C N) is an index set with |  |<
co. When | Q |> n, we define Re = > o RDi,...i,,, where Dy, ..; =
det[T;, -+ T;, ]

For example, let R = Z, F = R? and ¢ = {T} = (1,1), Ta = (2,0),
T3 = (2,6)} Then D12 = det[Tng] = det(% = 72, D13 = det[Tng] =
det (34) = 4 and Dog = det[TxT5] = det(32) = 12. Now we have R¢ =
(—2,4,12) = 27Z.

Also B(j1,-..,Jk) € Myxk(R) denotes a submatrix of B € M, xn(R) con-
sisting of the columns ji,...,jx € {1,...,n} of B.

ii) Let M = (x1,...,x,) be a projective R-module and F' = R". By Lemma
1.1, there exist an R-module monomorphism ¥ : M — R" and a unique matrix
A € My xn(R) such that U(M) = (A) and M ~ (A). Put o = {x1,22,...,2,}
and 8 = {e1,ea,...,en}, where e; = (0,...,0,1,0,..., 0) € F with 1 as the
ith component and W(z;) = >°7_, rije;. We will use the notation (U] .=
Let M = {(a},...,2)), o ={z,...,2.,} and B’ = {e1,...,en}, where e; =
(0,...,0,1,0,...,0) € R™ with 1 as the ith component. Put A" = [\IJ’]g/,, where
U : M — R™. Since M ~ (A) and M ~ (A’), we have (A) ~ (A’).

iii) With the same notations as in parts (i) and (ii), let n := {y; € M |i € Q},
where y; = Z?Zl tijz; and N := (n) be a submodule of M. We put {(A4) :=
{T;A € (A)|ieQ}.

Let R be a commutative ring with identity, a € R and I be an ideal of R.
We put (I :a) ={r € R|ra € I}. Clearly, (I : a) is an ideal of R.

ilw--aine

0)
)

Lemma 1.2. Let A= [¥]5 and N = (n). Then

i) §R§(A) C(N:M)C \/(%g(A) : det A).

ii) If N is a prime submodule of M, then

§R§(A) C(N:M)C N/(éRé(A) s det A).

iii) Let R be a domain, N = (y1,...,ym) (m < n), and det A # 0. Then
(N:M)=0.

Proof. 1) Let T = (£(A)) be a submodule of F' = R™. Since ¥ is a monomor-
phism, N ~ T and hence (T : (4)) = (N : M). Now by [5, Lemma 1.1], we
have Reay € (T2 F). So Reay S (T: F) C(T: (A4)) = (N : M).
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Suppose that r € (N : M). Since M = (z1,...,x,) and N = (n), where
77 ={y; € M|i € Q}, ro; € N for every i(1 < 1 < n). So for every i(1 <
i < n), there exist s; € N, ky € R and y; € n(1 <1 < s;) such that rz; =
lel ayi. Since for every (1 < I < s;), yy € M then there exists t;, €
R(1 <m < n)suchthat yy =Y 0 | tim@m. Now we have ra; = > )% kyya =

1o kit ey tim®m) = o521 215y Katitm@m. Now for every i(1 < i <
n) and for every m(1l < m < n), we put by, = le;l kititm. So rx; =
> bim@m. Since ¥ is a monomorphism, (0,...,0,7,0,...,0)4 = ¥(rz;) =
\II(ZZI,Zl bzml'm) = (bila . ,bln)A Put Til = (tilla' .. 1ln)(]~ < l < 51) and
let Ay,..., A, be the rows of matrix A. Then for every i(1 < i < n) we have
rA; = by A1+ -+ binAn = ki Tin A+ - - + kisiTisiA- Then

PO e 0
0O r -~ 0
r*det A=det | . . det A
00 - 7
kiuTunA+ - kg, Ths, A
= det : :
kann1A+ e +knsnTnsn,A

Now we have 7" det A € R¢(4) and hence r € /(Re¢a) : det A). Therefore,
5)%5(14) C (N M) C (§R§(A) det A)
ii) Smce N is a prime submodule of M N M ) is a prlme ideal of R. Thus

by part (i), we have |/Rea) € /(N (Re(a) @ det A).

iii) Let r € (N : M) and suppose that mcl lel ki, yi for some k;, € R
(1 <i<mn). Then

r 0 0
0O r --- 0
r"det A = det L. . . det A
00 --- r
k11T1A+ s +k1meA
= det : :
knaTiA+ - +kom T A

Since m < n, the right side of equality above is zero and hence r™ det A = 0.
But det A # 0 and R is a domain, thus r = 0. Therefore, (N : M) = 0. O

Lemma 1.3. Let R be a commutative ring with identity and I be an ideal of
R.
i) If U is an R-module and V is a direct summand of U, then IUNV =
V.
i) If A= [V]2, then IF N (A) = I{A), where F = R™.
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Proof. 1) There exists a submodule V’ of U such that U = V +V’. Then IU =
IV +1IV'. By the modular law, ITUNV = VNIV 4+IV') = IV4H+(VNIV') =1V.
ii) By the notations in the proof of Lemma 1.1, since M is projective,

0— Ker® — R" 25 M — 0

splits. There is an R-homomorphism ¥ : M — R”™ such that ®. ¥ = idy,. It
follows that F' = R" = Ker® @ ¥(®(R")) = Ker® @ U (M) = Ker® @ (A).
Hence (A) is a direct summand of F. By (i), we have the result. O

Let A = [¥)8, N = (y1,...,4yx) (k < n), and p be a prime ideal of
R. Let B = [Ty Tk € Mixn(R) and C = BA. Put T,(B) = {T =
(t1,...,tn) € F|detB(i1,...,ix41) € p for every i1,...,ik41 € {1,...,n}},
where 8 = [T" T\ ---T}] € M(k+1)><n(R)' Let Sp(N) = {y = 3/_ tiz; €
M| (t1,...,tn)A € T,(C)}. Now by [5, Lemma 1.5(i)], 7,(C) is a submodule
of F = R" and since S,(N) = ¥~1(T,(C)), hence S,(N) is a submodule of M.
Also if the determinant of every submatrix k x k of C is in p, by [5, Lemma

1.5(iii)], T,(C) = F and hence S,(N) = U—L(F) = M.

Lemma 1.4. Let A= [V]3, N = (y1,...,yx) (k <n), and p be a prime ideal
of R. Let B=[Ty -+ Ti] € Mgxn(R) and C = BA.
i) If y € Sp(N), then det C(j1,...,jk)y € pM + N for all submatrices
C(jh s 7jk) Ofc
il) If there exists a submatrwj C ]1,...7]k) € Mpxr(R) of C such that
det C(j1,...,Jx) & p and (A) € T,(C), then Sy(N) is a p’'-prime sub-
module of M such that p Q v, where (Sp(N) M) =1p.

Proof. 1) Let y = Y1 tiz; € Sp(N) and C(j1,...,jk) € Mixi(R) be a sub-
matrix of C. Then (t1,...,t,)A € T,(C) and by [5, Lemma 1.5(ii)], X =
det C(j1,. .., k) (t1, .. tn)A € pF+(C). So there exist X’ € pF and Y’ € (C)
such that X = X' +Y’. By Lemma 13, X' = X —-Y' € pFn(4) =
p(A) and hence there exist v; € p (1 < i < mn)and 2z € R (1 < i < k)
such that X = (v1,...,0,)A + (21,...,2,)C. Since C = BA and X =
det C(ju, ..., ji)(t1, ... tn)A, we have U(det C(ji,...,Jk) Dory tizs) = X
O v+ Zle 2;y;). Since ¥ is a monomorphism, we have

n k
det C'(j1,. .., Jk)y = Zﬂﬂi + Z z;y; € pM + N.

i=1 i=1
ii) Let C(j1,...,Jk) € Mgxr(R) be a submatrix of C such that det C(jq,...,
Ji) € p. Let Sp(N) = M. So R = (S,(N) : M) = (T,(C) : (A)) and hence
(A) C T,(C), which is a contradiction. Thus S,(N) # M. By [5, Lemma
L.5(iv)], T,(C) is a p-prime submodule of F and hence S,(N) = ¥=1(T,(C))
is a prime submodule of M. Let (S,(N) : M) = p’. Now we have p = (T,,(C) :
F) € (T,(C) : (A)) = (Sp(N) : M) = ] 0

Theorem 1.5. Let A= V]2, N = (n) and p be a prime ideal of R. Then



734 R. NEKOOEI AND Z. POURSHAFIEY

i) N is a p-prime submodule of M if and only if (N : M) = p and
N = pM or there exists a positive integer k < n, y; € n (1 < i < k)
such that N = S,(L), where L = (y1,...,Yk)-

ii) Let N be a p-prime submodule of M, N # pM and k be a positive
integer in part (i). Suppose that for every submodule H = (z1, ..., zk),
€N (1<i<k), z= 2?21 $ijTj, D = [8ijlkxn, E = DA such that
(A) € T,(FE) and det E(j1, ..., ji) € p for some j1,...,jx € {1,...,n}.
Then N = S,(H).

iii) Let N and N’ be p-prime submodules of M and N, N’ # pM. Suppose
that N’ ; N and ky, kn' are positive integers for N and N’ in part
(1) Then kn' < k.

Proof. 1) Suppose that N is a p-prime submodule of M and N # pM. Let 0
be the collection of all positive integers m such that there exists a submodule
L={y1,...,Ym) for some y; € n (1 <i < m), such that det C(j1,...,5m) € p
for some ji,...,5m € {1,...,n}, where B = [T} ---T};,] and C = BA. Since
N #pM, 1 € 6 and hence 0 # (). By the proof of Lemma 1.2, every element of
0 is less than n. In particular, max(f) < n. Now let k¥ = max(¢). Now there
exists a submodule L = (yi,...,y;) for some y; € n (1 < i < k), such that
det C(j1,...,jk) & p for some j1,...,jx € {1,...,n}, where B = [T} - -- T] and
C = BA. Now we show that N = S,(L). Let y € S,(L). Then by Lemma
1.4(i), det C(j1,...,jx)y € pM + L C N. Since det C(j1,...,Jjx) € p and N is
a p-prime submodule of M, we have y € N. Thus S,(L) C N. If (4) C T,,(C),
then M C S,(L) C N and so N = M, which is a contradiction. So (A) ¢
T,(C) and by Lemma 1.4(ii), S,(L) is a prime submodule of M. Now since
k = max(f), n C S,(L) and hence N C S,(L). Thus N = S,(L). Conversely,
suppose that N = pM. By [1, Corollary 2.3], pM is a p-prime submodule
of M. Assume that there exist positive integer k¥ < n and L = (y1,...,Yk),
B=[T1---Ty], C = BAsuchthat N = S,(L). If det C(i1,...,ir) € p for every
i1y...,0x € {1,...,n}, then by the statement just prior to Lemma 1.4, N = M.
So (N : M) = R, which is a contradiction. Therefore there exists a submatrix
C(j1,---,Jk) of C such that det C(j1,...,jk) € p. On the other hand, since
N # M, (A) € T,(C) and by Lemma 1.4(ii), N is a p-prime submodule of M.

ii) By part (i), there exist y; € n (1 <4 < k), and L = (y3,...,yx) such
that N = S,(L). Let B = [T} ---T}] and C = BA. By [5, Proposition 1.7],
Tp(E) = T,(C). So N = Sy(L) = ¥~ HT,(C)) = ¥~ HT,(E)) = Sp(H).

iii) By the proofs of parts (i) and (ii), there exist matrices C and C” such that
N = UV~YT,(C)) and N’ = ¥~ 1(T,(C")). Let P = T,(C) and P’' = T,(C").
We have ky = kp and ky. = kp,. Now the proof follows by [5, Proposition
1.8]. O

Corollary 1.6. Let R be a domain, A = [V]?, N = (y1,...,yx) (k < n) and
det A # 0. Suppose that B = [Ty -+ -Ty] € Mgxn(R) and C = BA such that
rankC = k and (A) € T(o)(C). Then N is a prime submodule of M if and
only if N = Sy (N).



ON PRIME SUBMODULES 735

Proof. By Lemma 1.2(iii), (N : M) = 0. Since rankC = k, there exists a
submatrix C(j1,...,Jk) € Mgxk(R) such that det C(j1,..., k) # 0. Now the
proof follows from Theorem 1.5(i). O

Let N be a p-prime submodule of an R-module M. We recall that the
p-height of N is equal to n and denoted by p-ht(N), if there exists a chain
No& N1 & -+ & Ny =N of p-prime submodules of M with maximal length.

Proposition 1.7. Let A = [¥]? and N = (n). If N is a p-prime submodule of
M and ky is the positive integer in Theorem 1.5(1), then p-ht(N) = ky.

Proof. Note that if N = pM, then p-ht(N) = 0. We define ky = 0. Thus
p-ht(N) = kn. Now assume that ky > 1. We shall use induction on ky to
prove the proposition. Let ky = 1. Suppose that L is a p-prime submodule
of M with L G N. If L # pM, since pM G L G N, then 0 < kp < 1,
which is a contradiction. Thus L = pM and hence p-ht(N) = 1. Assume that
the assertion is true for any ky, 1 < ky < m — 1. Suppose that ky = m.
Then there exists a submodule L = (y1,...,ym), v: € n (1 < i < m) such
that N = S,(L) and det C(j1,...,Jm) & p for some ji,...,jm € {1,...,n},
B=[Ty---Ty] and C = BA. Let L" = (y1,.-.,Ym-1), B = [Th - Trn_1]
and C” = B" A. Since det C(j1,...,Jm) € p, there exists an (m — 1) x (m —1)
submatrix, C”(s1,...,8m—1) of C(j1,...,Jm) with det C"(s1,...,8m—1) & p-
Now by Lemma 1.4(ii), S = S,(L”) is a p’-prime submodule of M. Since
S C N, p=yp'. By the induction hypothesis, p-ht(S) = m — 1. So there exists
a chain of p-prime submodules No =pM S N1 G --- G N,y 1 =SS Ny =N
of length m and hence p-ht(N) > m. Now let Ng=pM G N1 G--- G N1 &
N; = N be a chain of p-prime submodules of M. Then ky, , < ky = m
and by the induction hypothesis, [ —1 < ky, , < m. Thus [ < m and hence
p-ht(N) = m. Therefore p-ht(N) = ky. O

In the rest of this section we describe the structure of prime submodules of
a finitely generated projective module over a UFD and a Dedekind domain.

Theorem 1.8. Let R be a UFD (respectively, Dedekind domain), A = [¥]2 and
N = (y1,...,yk) (k <n). Suppose that B = [Ty ---T}] € Mgxn(R), C = BA
and rankC = k. We have
i) If k < n, then N is a prime submodule of M if and only if « GCD
of (respectively, the ideal generated by) the determinants of all k X k
submatrices of C, is 1 (respectively, R).
i) If k = n, then N is a prime submodule of M if and only if there exist
an irreducible element p € R (respectively, a prime ideal p of R), a
unit u € R and a positive integer o < n such that (det C') = up® and a
GOD of (respectively, the ideal generated by) entries of C' is p®~1.

Proof. Let T = (£(A)) be asubmodule of F = R™. Since ¥ is a monomorphism,
N ~ T. Now the proof (i) and (ii), follows by [2, Theorem 2.5] (respectively,
[5, Theorem 2.2]). O
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Example 1.9. Let R = Z[v/10]. We know that R is a Dedekind domain but
it is not a UFD. Let M = R(3) + R(%). By [4, Theorem VIII, 6.8], M is a
projective R-module. We define ® : R? — M by ®((1,0)) = 1 and ®((0,1)) =
+. We define ¥ : M — R? by ¥U(3) = (3,-3) and ¥(3) = (2,-2). So by
Lemma 1.1, M ~ (A), where A = (3 :3) € Msy2(R). Let N = (%tl + %t2>,
where t; = x1 + 29V/10 and ¢, = y1 + yg\/ﬁ, T1,%2,Y1,Y2 € Z. We have,
B = [tl t2]1><2 and C = BA = [3t1 +2t2 — 3t1 - Ztg]lxg. Let J = R(gtl +2t2)
Then by Theorem 1.8, N is prime if and only if J = R if and only if 3t; + 2t
is a unit element of R. For example, let t; = 3 + v/10 and ts = —3 — V/10.
Then 3t; + 2t, = 3+ /10 and (3 ++/10)(—3 4+ v/10) = 1. So 3t; + 2t is a unit
element of R and hence N = (3(3 4 V10) + (=3 — V10)) = (3 + :V/10) is a
prime submodule of M.

2. Primary decomposition of submodules of a finitely generated
projective module

In this section we describe a primary decomposition of a submodule of a
finitely generated projective module over a domain.

Let A= [U])3 N = {(y1,...,u1) (k <n), and Q be a p-primary ideal of R
containing R¢(4). Let B = [Ty ---T] and C' = BA.

Put To(B) = {T = (t1,...,tn) € F|detB(i1,...,ik+1) € Q for every
11, ...,0k+1 € {1, ey n}}, where g = [T T -- Tk] S M(kJrl)Xn(R) and SQ(N)
={y =Y. tixz; € M|(t1,...,tn)A € To(C)}. As an observations before
Lemma 1.4, Sg(N) is a submodule of M. Also if the determinant of every
k x k submatrix of C' is in @, Sq(N) = M.

Lemma 2.1. Let A= [V]2, N = (y1,...,yx) (k <n), and Q be a p-primary
ideal of R containing Re(ay. Let B = [T ---Ty] and C = BA. We have

) If y = > " tiwi € So(N), then for every submatriz C(j1,...,jk) of
C, det C(j1,...,5k)y € QM + N.

ii) If (A) € So(N) and there exists a submatriz C(j1,...,jx) of C such
that det C(j1, ..., jk) & Q, then Sq(N) is p'-primary submodule of M
such that p C p'.

Proof. The proof is similar to the proof of Lemma 1.4. O

Remark. Let A =[] and N = (n). Suppose that N is a p-primary submodule
of M with (N : M) =Q and n ¢ QM. Let 0 be the collection of all positive
integers m such that there exist a submodule L = (y1,...,¥) and a submatrix
C(j1,---,Jm) such that det C(j1,...,jm) &€ @ for some ji,...,Jm € {1,...,n}.
Since n ¢ QM, then 1 € 6. Let k& = max6. Since Rgqy € Q, k < n.
Assume that L = (y1,...,y,) with det C(j1,...,7%) & Q for some ji,...,jx €
{1,...,n}. Ify € Sg, then by Lemma 2.1(i), det C(s1,...,s,)y € QM+N C N
for all sq,...,s, € {1,...,n}. So, if det C(sy,...,sk) & p for some s1,...,s; €
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{1,...,n}, then Sg C N. Now by Lemma 2.1(ii), Sg is a p/-primary submodule
of M with N C Sg. Thus N = Sg.

Theorem 2.2. Let R be a domain, A = [V]2 and N = (n). Suppose that
N is a proper submodule of M with |Q| > n. Let Reay be a nonzero ideal
of R such that Re¢(4y = REj,...5, for some ji,...,j, € Q, where Ej ..; =
det[T;, - - T;,]A. Suppose that Reay = (Niey Qi is a minimal primary decom-
position of Re(a) with Ass(Re(ay) = {pi}i~, and Sq, as above is a submodule
of M with \/(Sqy : M) = pl. Let {ai}iey — {p!|(A) & To,}. Then

a) N'_, So, is a primary decomposition of N.

b) If {g:i}i_, has no embedded prime ideal, then (\,_, Sq, is a minimal
primary decomposition of N with Ass(N) = {q; }i_;.

c) Leti € {1,...,m}. There exist submodules L; = (y1(%),...,y, (3))
of N such that y(i) € n (1 <1 < k;), det C;(jir,---,Jir;) & Qi,
for some ji1,..., 5k, € {L,...,n} and Sq, = Sq,(L;). If there exists
Ci(si1y- .-, Sik;) for some s;1,..., sk, € {1,...,n} such that

det CZ'<SZ‘1, ey Szkb) Q Pi
for all i € {1,...,m}, and for every i,j € {1,...,t}, ¢; # q;, then
ﬂ§=1 Sq, is a minimal primary decomposition of N with Ass(N) =
{ai}io1-
Proof. a) By [5, Theorem 3.2(a)], (C) =(;~, Tq,. Then

m

m t
N=wv'(C) =¥ (Te) =) Se: =) Sa.-
i=1 i=1 i=1
b) Suppose that ﬂizi# Sq, € Sq, for some j (1 < j <m). Then
\/(ﬂﬁzi# Sq, : M) C /(Sq, : M) and hence ﬂizi# ¢; C ¢;. It follows that
¢ C g; for some i (1 < i < m), i # j, which is a contradiction.
¢) Suppose that ﬂfl:i# Sq, C Sq, for some j (1 < j <t). Then (2, To, C
N, To. C T, and by [5, Theorem 3.2(c)], it is a contradiction. O

Corollary 2.3. Let R be a Dedekind domain, A = [¥]3 and N = (y1,...,yn).
Let B=[Ty---T,], C = BA and rankC = n. Then ﬂle S,ei is a minimal
primary decomposition of N for some distinct mazimal ideals p1, . ..,py of R.

Proof. Since R is a Dedekind domain, by [5, Corollary 3.3], there exist dis-
tinct maximal ideals qi,...,q; of R and a; € N such that (C) = N._, Ty
is a minimal primary decomposition of (C). Since ¥ is a monomorphism,
N = U((0)) = U, Tye) = MYy Sy Let {prv-...pi} = fai| (4) €
T }. Now by Lemma 2.1(ii) and since R is a Dedekind domain, N = ﬂle Spei
is a minimal primary decomposition of N and Ass(N) = {p1,...,pr}- O
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3. Radical of a submodule of a finitely generated projective module

In this section we characterize the radical of an arbitrary submodule of
a finitely generated projective module M over a commutative ring R with
identity. Also we study submodules of M which satisfy the radical formula.
Let A= [¥]% and N = (n). We put

[TLA- T Al = > Rdet C(j1, ..., jm);

JiyeeesJm €{1,.0m}

where C' = [N A-- Ty Al and R = >, o R[Ti,A...T;,Al: (1 <t <n).
Note that 1 DR D --- D R, = %5(14).

Let M be an R-module, p be a prime ideal of R and N be a submodule of
M. In [7], Pusat-Yilmaz and Smith defined the submodule K(N,p) = {m €
M |em € N + pM for some ¢ € R\p}. They showed that this is the smallest
p-prime submodule of M containing N and so Rady N = N{K(N,p)|p is a
prime ideal of R}.

Lemma 3.1. Let A = [¥]2, p be a prime ideal of R and N = (n). We have

i) If (N : M) ¢ p, then K(N,p) = M.
ii) If Ry Cp and (pM : M) = p, then K(N,p) = pM.
iii) If p # 0 is a mazimal ideal of R, % € p and K(N,p) # M, then there
exist a positive integer k < n and a submodule L = (y1,...,Yk), ¥i €1
(1 <i<k) such that K(N,p) = S,(L).

Proof. i) Let p be a prime ideal of R. Assume that (N : M) is not contained
inpand ce (N: M)\p. SocM C N and hence M C K(N,p).

ii) Let Ry C p. Since pM contains N, by [1, Corollary 2.3], pM is a p-prime
submodule of M. So K(N,p) = pM.

iii) Let R be not contained in p. Suppose that 6 is the set of all positive
integers m such that there exist a submodule L = (y1,...,yn) for some y; € n
(1 <i<m), and a submatrix C(j1,...,Jm) such that det C'(j1,...,Jm) & p for
some ji,...,Jm € {1,...,n}, where B = [T} ...T},] and C = BA. Since ®; ¢
p, 1 ¢ pM and hence 1 € 6. Thus 0 # (). Let k = max(f). By Lemma 1.2(i),
we have k < n. Suppose that L = (y1,...,yx) is a submodule of M such that
det C(j1,...,Jk) € p for some ji,...,j, € {1,...,n}, where B = [T} - -- T};] and
C = BA. By Lemma 1.4(i), S,(L) € K(N,p). So (A) € S,(L) and by Lemma
1.4(ii), we have S,(L) is a prime submodule of M. Since p # 0 is maximal ideal,
(Sp(L) : M) =p. Thus K(N,p) C S,(L). Therefore K(N,p) = S,(L). O

Let F be the free R-module R™ and W = (£). By [6, Theorem 2.4],
RadpW = {T = (t1,...,tn) € VWi F|[T T3, - Ti,_, ]k € VRy for every
i1y yig—1 € Q, 2 < k < n}, where R, = >, R[T;, ... T; ]x and
[T T, .'.ﬂk—l]k = Zjl,...,jke{l,...,n}R det B(ji,...,jx) with B = [T" T;, - -~
T;

k-
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Theorem 3.2. Let A= [V]? and N = (n). Then RadyN = {y =i, tiz; €
M| (t1,...,tn)A € RadpT}, where T = ({(A)).

Proof. We know that RadyN = (), K(N,p). At first we will show that
K(T,p) N (A) = W(K(N,p)) for every prime ideal p of R. Let y = Y1 | t;x; €
K(N,p). There exists ¢ € R — p such that cy = Y1 | ctjz; € N +pM. So
there exist m € N, k; € R (1 < ¢ <m)andl; € p (1 < j < n) such that
S ctizg = YL kiyi + 20wy = L k(o tiyry) + T Ly =
Z?:l Z:il kitijz + Z?:l ljz;. Now we have

c¥(y) = ¥(cy)

= (Zkiti17"'7zkitin)14+ (11,7ln)A S T+p<A> - T+pF
= i=1

So ¥(y) € K(T,p) N (A) and hence V(K (N,p)) C K(T,p) N (A). Conversely,
let Y € K(T,p) N (A). There exist c€ R—pand l; € R (1 <j < n) such that
Y =(,...,ln)A and ¢Y = (cly,...,cl,)A € T+ pF. So there exist m € N,
ki€ RRT;AeT (1<i<m)andz € p (1 <i<n)suchthat (cly,...,cl,)A =
(k1,...,kn)BA + (z1,...,2,), where B = [I1---Ty]. So by Lemma 1.3,
(#1y...,2n) € pFN(A) = p(A). Then there exists z; € p (1 <i<mn)such
that (21,...,2,) = (21,-..,25)A and hence (cly,...,cly)A = ((k1,...,k,) B+
(21, n))A Thus O30, clizy) = U kiyi + >y 1:101) Since W
is a monomorphism, we have > I, cliz; = >..* kiyi + Y ., zia; and hence
(32 liz;) € N+ pM. Now we have

> Lz € K(N,p).
i=1

SoY = W(3"  liz;) € U(K(N,p)) and hence K(T,p) N (A) = ¥(K(N,p)).
Since for every y = Y.°  t;x; € M, ¥(y) € (A), we have y € RadyN if
and only if y € (), K(N,p) if and only if ¥(y) € M, K(T,p) if and only if
(t1,.. -, ta)A €N, K(T,p) if and only if (¢t1,...,t,)A € RadpT. O

Proposition 3.3. Let A = [¥]? and N = (). If there existm (1 <m < n—1),
and a submodule L = (y1,...,ym) of N for some y; € n (1 <1i < m) such
that C contains an m X m submatriz whose determinant is a unit in R and

VRmi1 = /(N : M), where B = [Ty ---T,] and C = BA, then N s.t.r.f in
M.

Proof. Suppose that there exist a submodule L = (y1,...,ym) of N for some
yi € n (1 < i < m), and a submatrix C(ji1,...,Jm) for some ji,...,5m €
{1,...,n} such that det C(j1, ..., jm) is unit. Let y = >_"" | t;2; € Radp N and
p=+/(N:M). Then [TATiA - TrAlmi1 C /Rt1 = /(N : M). If we re-
place the radical p in [5, Lemma 1.5(ii)] with /(N : M), then det C(iy, ..., im)
TA € pF + (C). Since det C(j1,...,jm) is unit, TA € pF + (C) and hence
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y € pM + N. Tt follows that y € /(N : M)M + N and hence Rady N =
V(N : M)M + N = (Ep(N)). O

Corollary 3.4. Let (R,m) be a local ring with m as mazimal ideal, A = [¥]3

and N = (n). If R; = R and \/R; 11 = /(N : M) for some j (1<j<n-—1),
then N s.t.r.fin M.

Proof. Let %; =3, ien R[T;, A--- T, Al; = R for some j (1 <j<n—1),
and /R; 1 = /(N : M). Since R is a local ring, there exist a submodule L =
(y1,...,y;) for some yq,...,y; € n and a submatrix C(i1,...,4;) € M;x;(R)
for some i1,...,4; € {1,...,n} such that detC(i1,...,7;) is unit. Now by
Proposition 3.3, N s.t.r.fin M. (I

Proposition 3.5. Let R be a commutative ring with identity, A = [¥]? and
N=). IfVfi=vRo=-=Ruo1 =/(T: F), where T = (£(A)), then
Rady N = /(N : M)M = (Ep(N)).

Proof. Since ¥ is a monomorphism, N ~ T. By [6, Proposition 2.7], we have
RadpT = /(T : F)F = (Ep(T)). Let y = Y. tiz; € RadyN. Then
X = (t1,...,tn)A € RadrT = /(T : F)F. Suppose that I = /(T : F). By
Lemma 1.3, we have X € IF N (A) = I{A). So there exists r; € I (1 < i <
n) such that X = (rq,...,r,)A. Thus y € IM C /(N : M)M and hence

Rady N = /(N : M)M = (Ep(N)). O
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