ON PRIME SUBMODULES OF A FINITELY GENERATED PROJECTIVE MODULE OVER A COMMUTATIVE RING

Reza Nekooei and Zahra Pourshafiey

Abstract

In this paper we give a full characterization of prime submodules of a finitely generated projective module M over a commutative ring R with identity. Also we study the existence of primary decomposition of a submodule of a finitely generated projective module and characterize the minimal primary decomposition of this submodule. Finally, we characterize the radical of an arbitrary submodule of a finitely generated projective module M and study submodules of M which satisfy the radical formula.

0. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. We denote a unique factorization domain by UFD and a principal ideal domain by PID. Note that in a UFD, a greatest common divisor (GCD) of any collection of elements always exists. A proper submodule P of an R-module M is called p-prime if $r m \in P$ for $r \in R$ and $m \in M$ implies $m \in P$ or $r \in p=(P: M)$, where $(P: M)=\{r \in R \mid r M \subseteq P\}$. Let N be a submodule of M and $N=\bigcap_{i=1}^{k} N_{i}$ be a minimal primary decomposition of N with $\sqrt{\left(N_{i}: M\right)}=p_{i}$. Then $\operatorname{Ass}(N)=\left\{p_{1}, \ldots, p_{k}\right\}$. The radical of a submodule N in an R-module $M, \operatorname{Rad}_{M} N$, is defined to be the intersection of all prime submodules of M containing N. If there is no prime submodule containing N, then $\operatorname{Rad}_{M} N$ is defined to be M. In particular, $\operatorname{Rad}_{M} M=M$. Let M be an R-module and N be a submodule of M. The envelope of N in M is defined to be the set $E_{M}(N)=\left\{r m \mid r \in R, m \in M ; r^{n} m \in N\right.$ for some $\left.n \in \mathbb{N}\right\}$. We say that the submodule N of an R-module M satisfies the radical formula in M (N s.t.r.f. in M) if $\operatorname{Rad}_{M} N=\left\langle E_{M}(N)\right\rangle$. An R-module M is said to satisfy the radical formula if every submodule of M satisfies the radical formula. Prime and primary submodules of a finitely generated free module over a PID were studied in [2, 3]. The authors in [2] described prime submodules of a finitely

[^0]generated free module over a UFD and characterized the prime submodules of a free module of finite rank over a PID. In [5], the authors have given a full characterization of prime submodules of a finitely generated free R-module F, where R is an arbitrary commutative ring with identity and they have extended some results obtained in [2], to a Dedekind domain. Also they studied the existence of primary decomposition of a submodule of F, where R is an integral domain, and characterized its minimal primary decomposition and they used their results in a Dedekind domain. In [6], the authors characterized the radical of an arbitrary submodule of a finitely generated free R-module F and study submodules of F which satisfy the radical formula. In this paper we give a full characterization of prime submodules of a finitely generated projective module M over a commutative ring R with identity. Also we study the existence of primary decomposition of a submodule of a finitely generated projective module M and characterize the minimal primary decomposition of this submodule. Finally, we characterize the radical of an arbitrary submodule N of a finitely generated projective module M and study submodules of M which satisfy the radical formula.

1. Prime submodules of a finitely generated projective module

Let X be a subset of an R-module M. We denote the submodule of M that X generates, by $\langle X\rangle$ or $R X$. We use the notation R^{n} for $\underbrace{R \oplus \cdots \oplus R}_{n \text {-times }}$. Let m and n be positive integers, $A \in M_{m \times n}(R)$ and F be the free R-module R^{n}. We shall use the notation $\langle A\rangle:=\left\langle A_{1}, \ldots, A_{m}\right\rangle$ for the submodule N of F generated by the rows A_{1}, \ldots, A_{m} of the matrix A and the notation $\left(r_{1}, \ldots, r_{m}\right) A, r_{i} \in R$, for any element of N. Let $B \in M_{m \times m}(R)$. We denote the adjoint matrix of B by B^{\prime}, so that $B B^{\prime}=B^{\prime} B=(\operatorname{det} B) I_{m}$, where I_{m} is the $m \times m$ identity matrix.

Lemma 1.1. Let R be a commutative ring with identity and M be a finitely generated projective R-module. Then there exist $n \in \mathbb{N}$ and a matrix $A \in$ $M_{n \times n}(R)$ such that $M \simeq\langle A\rangle$.

Proof. Let $M=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. There exists an epimorphism $\Phi: R^{n} \rightarrow M$ with $\Phi\left(e_{i}\right)=x_{i}$, where $e_{i}=(0, \ldots, 0,1,0, \ldots, 0) \in R^{n}$ with 1 as the ith component. Projectivity of M gives a monomorphism $\Psi: M \rightarrow R^{n}$ with $\Phi \Psi=1_{M}$. Now there exists a unique expression $\Psi\left(x_{i}\right)=\sum_{j=1}^{n} r_{i j} e_{j}$ for each $x_{i}(1 \leq i \leq n)$. Let $A=\left[r_{i j}\right] \in M_{n \times n}(R)$. Since for every $t_{i} \in R(1 \leq i \leq n)$, $\Psi\left(\sum_{i=1}^{n} t_{i} x_{i}\right)=\left(t_{1}, \ldots, t_{n}\right) A$, we get $\Psi(M)=\langle A\rangle$ and hence $M \simeq\langle A\rangle$.

In the rest of this paper we use the following notations.
i) Let $T_{i}=\left(t_{i 1}, \ldots, t_{\text {in }}\right) \in F=R^{n}$ for some $t_{i j} \in R, 1 \leq i \leq m, 1 \leq j \leq n$. We put

$$
B=\left[T_{1} \cdots T_{m}\right]:=\left(\begin{array}{cccc}
t_{11} & t_{12} & \cdots & t_{1 n} \\
t_{21} & t_{22} & \cdots & t_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
t_{m 1} & t_{m 2} & \cdots & t_{m n}
\end{array}\right) \in M_{m \times n}(R)
$$

Thus the j th row of the matrix $\left[T_{1} \cdots T_{m}\right.$] consists of the components of element T_{j} in F. We use W to be a non-zero submodule of F with generating set $\xi=\left\{T_{i}=\left(t_{i 1}, \ldots, t_{i n}\right) \in F \mid i \in \Omega\right\}$, where $\Omega(\subseteq \mathbb{N})$ is an index set with $|\Omega|<$ ∞. When $|\Omega| \geqslant n$, we define $\Re_{\xi}=\sum_{i_{1}, \ldots, i_{n} \in \Omega} R D_{i_{1} \cdots i_{n}}$, where $D_{i_{1} \cdots i_{n}}=$ $\operatorname{det}\left[T_{i_{1}} \cdots T_{i_{n}}\right]$.

For example, let $R=\mathbb{Z}, F=R^{2}$ and $\xi=\left\{T_{1}=(1,1), T_{2}=(2,0)\right.$, $\left.T_{3}=(2,6)\right\}$. Then $D_{12}=\operatorname{det}\left[T_{1} T_{2}\right]=\operatorname{det}\left(\begin{array}{ll}1 \\ 2 & 1 \\ 0\end{array}\right)=-2, D_{13}=\operatorname{det}\left[T_{1} T_{3}\right]=$ $\operatorname{det}\left(\begin{array}{ll}1 & 1 \\ 2 & 6\end{array}\right)=4$ and $D_{23}=\operatorname{det}\left[T_{2} T_{3}\right]=\operatorname{det}\left(\begin{array}{ll}2 & 0 \\ 2 & 6\end{array}\right)=12$. Now we have $\Re_{\xi}=$ $\langle-2,4,12\rangle=2 \mathbb{Z}$.

Also $B\left(j_{1}, \ldots, j_{k}\right) \in M_{m \times k}(R)$ denotes a submatrix of $B \in M_{m \times n}(R)$ consisting of the columns $j_{1}, \ldots, j_{k} \in\{1, \ldots, n\}$ of B.
ii) Let $M=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a projective R-module and $F=R^{n}$. By Lemma 1.1, there exist an R-module monomorphism $\Psi: M \rightarrow R^{n}$ and a unique matrix $A \in M_{n \times n}(R)$ such that $\Psi(M)=\langle A\rangle$ and $M \simeq\langle A\rangle$. Put $\alpha=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\beta=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, where $e_{i}=(0, \ldots, 0,1,0, \ldots, 0) \in F$ with 1 as the ith component and $\Psi\left(x_{i}\right)=\sum_{j=1}^{n} r_{i j} e_{j}$. We will use the notation $[\Psi]_{\alpha}^{\beta}:=A$. Let $M=\left\langle x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\rangle, \alpha^{\prime}=\left\{x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\}$ and $\beta^{\prime}=\left\{e_{1}, \ldots, e_{m}\right\}$, where $e_{i}=$ $(0, \ldots, 0,1,0, \ldots, 0) \in R^{m}$ with 1 as the ith component. Put $A^{\prime}=\left[\Psi^{\prime}\right]_{\alpha^{\prime}}^{\beta^{\prime}}$, where $\Psi^{\prime}: M \rightarrow R^{m}$. Since $M \simeq\langle A\rangle$ and $M \simeq\left\langle A^{\prime}\right\rangle$, we have $\langle A\rangle \simeq\left\langle A^{\prime}\right\rangle$.
iii) With the same notations as in parts (i) and (ii), let $\eta:=\left\{y_{i} \in M \mid i \in \Omega\right\}$, where $y_{i}=\sum_{j=1}^{n} t_{i j} x_{j}$ and $N:=\langle\eta\rangle$ be a submodule of M. We put $\xi(A):=$ $\left\{T_{i} A \in\langle A\rangle \mid i \in \Omega\right\}$.

Let R be a commutative ring with identity, $a \in R$ and I be an ideal of R. We put $(I: a)=\{r \in R \mid r a \in I\}$. Clearly, $(I: a)$ is an ideal of R.

Lemma 1.2. Let $A=[\Psi]_{\alpha}^{\beta}$ and $N=\langle\eta\rangle$. Then
i) $\Re_{\xi(A)} \subseteq(N: M) \subseteq \sqrt{\left(\Re_{\xi(A)}: \operatorname{det} A\right)}$.
ii) If N is a prime submodule of M, then

$$
\sqrt{\Re_{\xi(A)}} \subseteq(N: M) \subseteq \sqrt{\left(\Re_{\xi(A)}: \operatorname{det} A\right)} .
$$

iii) Let R be a domain, $N=\left\langle y_{1}, \ldots, y_{m}\right\rangle(m<n)$, and $\operatorname{det} A \neq 0$. Then $(N: M)=0$.
Proof. i) Let $T=\langle\xi(A)\rangle$ be a submodule of $F=R^{n}$. Since Ψ is a monomorphism, $N \simeq T$ and hence $(T:\langle A\rangle)=(N: M)$. Now by [5, Lemma 1.1], we have $\Re_{\xi(A)} \subseteq(T: F)$. So $\Re_{\xi(A)} \subseteq(T: F) \subseteq(T:\langle A\rangle)=(N: M)$.

Suppose that $r \in(N: M)$. Since $M=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and $N=\langle\eta\rangle$, where $\eta=\left\{y_{i} \in M \mid i \in \Omega\right\}, r x_{i} \in N$ for every $i(1 \leqslant i \leqslant n)$. So for every $i(1 \leqslant$ $i \leqslant n)$, there exist $s_{i} \in \mathbb{N}, k_{i l} \in R$ and $y_{i l} \in \eta\left(1 \leq l \leq s_{i}\right)$ such that $r x_{i}=$ $\sum_{l=1}^{s_{i}} k_{i l} y_{i l}$. Since for every $i l\left(1 \leqslant l \leqslant s_{i}\right), y_{i l} \in M$ then there exists $t_{i l m} \in$ $R(1 \leqslant m \leqslant n)$ such that $y_{i l}=\sum_{m=1}^{n} t_{i l m} x_{m}$. Now we have $r x_{i}=\sum_{l=1}^{s_{i}} k_{i l} y_{i l}=$ $\sum_{l=1}^{s_{i}} k_{i l}\left(\sum_{m=1}^{n} t_{i l m} x_{m}\right)=\sum_{m=1}^{n} \sum_{l=1}^{s_{i}} k_{i l} t_{i l m} x_{m}$. Now for every $i(1 \leqslant i \leqslant$ n) and for every $m(1 \leqslant m \leqslant n)$, we put $b_{i m}=\sum_{l=1}^{s_{i}} k_{i l} t_{i l m}$. So $r x_{i}=$ $\sum_{i=1}^{n} b_{i m} x_{m}$. Since Ψ is a monomorphism, $(0, \ldots, 0, r, 0, \ldots, 0) A=\Psi\left(r x_{i}\right)=$ $\Psi\left(\sum_{m=1}^{n} b_{i m} x_{m}\right)=\left(b_{i 1}, \ldots, b_{i n}\right) A$. Put $T_{i l}=\left(t_{i l 1}, \ldots, t_{i l n}\right)\left(1 \leqslant l \leqslant s_{i}\right)$ and let A_{1}, \ldots, A_{n} be the rows of matrix A. Then for every $i(1 \leqslant i \leqslant n)$ we have $r A_{i}=b_{i 1} A_{1}+\cdots+b_{i n} A_{n}=k_{i 1} T_{i 1} A+\cdots+k_{i s_{i}} T_{i s_{i}} A$. Then

$$
\begin{aligned}
r^{n} \operatorname{det} A & =\operatorname{det}\left(\begin{array}{cccc}
r & 0 & \cdots & 0 \\
0 & r & \cdots & 0 \\
\vdots & \vdots & & \\
0 & 0 & \cdots & r
\end{array}\right) \operatorname{det} A \\
& =\operatorname{det}\left(\begin{array}{ccc}
k_{11} T_{11} A+ & \cdots & +k_{1 s_{1}} T_{1 s_{1}} A \\
\vdots & & \vdots \\
k_{n 1} T_{n 1} A+ & \cdots & +k_{n s_{n}} T_{n s_{n}} A
\end{array}\right)
\end{aligned}
$$

Now we have $r^{n} \operatorname{det} A \in \Re_{\xi(A)}$ and hence $r \in \sqrt{\left(\Re_{\xi(A)}: \operatorname{det} A\right)}$. Therefore, $\Re_{\xi(A)} \subseteq(N: M) \subseteq \sqrt{\left(\Re_{\xi(A)}: \operatorname{det} A\right)}$.
ii) Since N is a prime submodule of $M,(N: M)$ is a prime ideal of R. Thus by part (i), we have $\sqrt{\Re_{\xi(A)}} \subseteq \sqrt{(N: M)}=(N: M) \subseteq \sqrt{\left(\Re_{\xi(A)}: \operatorname{det} A\right)}$.
iii) Let $r \in(N: M)$ and suppose that $r x_{i}=\sum_{l=1}^{m} k_{i_{l}} y_{l}$ for some $k_{i_{l}} \in R$ $(1 \leq i \leq n)$. Then

$$
\begin{aligned}
r^{n} \operatorname{det} A & =\operatorname{det}\left(\begin{array}{cccc}
r & 0 & \cdots & 0 \\
0 & r & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & r
\end{array}\right) \operatorname{det} A \\
& =\operatorname{det}\left(\begin{array}{ccc}
k_{11} T_{1} A+ & \cdots & +k_{1 m} T_{m} A \\
\vdots & & \vdots \\
k_{n 1} T_{1} A+ & \cdots & +k_{n m} T_{m} A
\end{array}\right)
\end{aligned}
$$

Since $m<n$, the right side of equality above is zero and hence $r^{n} \operatorname{det} A=0$. But $\operatorname{det} A \neq 0$ and R is a domain, thus $r=0$. Therefore, $(N: M)=0$.

Lemma 1.3. Let R be a commutative ring with identity and I be an ideal of R.
i) If U is an R-module and V is a direct summand of U, then $I U \cap V=$ IV .
ii) If $A=[\Psi]_{\alpha}^{\beta}$, then $I F \cap\langle A\rangle=I\langle A\rangle$, where $F=R^{n}$.

Proof. i) There exists a submodule V^{\prime} of U such that $U=V+V^{\prime}$. Then $I U=$ $I V+I V^{\prime}$. By the modular law, $I U \cap V=V \cap\left(I V+I V^{\prime}\right)=I V+\left(V \cap I V^{\prime}\right)=I V$.
ii) By the notations in the proof of Lemma 1.1, since M is projective,

$$
0 \longrightarrow \operatorname{Ker} \Phi \longrightarrow R^{n} \xrightarrow{\Phi} M \rightarrow 0
$$

splits. There is an R-homomorphism $\Psi: M \rightarrow R^{n}$ such that $\Phi . \Psi=i d_{M}$. It follows that $F=R^{n}=\operatorname{Ker} \Phi \oplus \Psi\left(\Phi\left(R^{n}\right)\right)=\operatorname{Ker} \Phi \oplus \Psi(M)=\operatorname{Ker} \Phi \oplus\langle A\rangle$. Hence $\langle A\rangle$ is a direct summand of F. By (i), we have the result.

Let $A=[\Psi]_{\alpha}^{\beta}, N=\left\langle y_{1}, \ldots, y_{k}\right\rangle(k<n)$, and p be a prime ideal of R. Let $B=\left[T_{1} \cdots T_{k}\right] \in M_{k \times n}(R)$ and $C=B A$. Put $T_{p}(B)=\{T=$ $\left(t_{1}, \ldots, t_{n}\right) \in F \mid \operatorname{det} \beta\left(i_{1}, \ldots, i_{k+1}\right) \in p$ for every $\left.i_{1}, \ldots, i_{k+1} \in\{1, \ldots, n\}\right\}$, where $\beta=\left[T T_{1} \cdots T_{k}\right] \in M_{(k+1) \times n}(R)$. Let $S_{p}(N)=\left\{y=\sum_{i=1}^{n} t_{i} x_{i} \in\right.$ $\left.M \mid\left(t_{1}, \ldots, t_{n}\right) A \in T_{p}(C)\right\}$. Now by [5, Lemma 1.5(i)], $T_{p}(C)$ is a submodule of $F=R^{n}$ and since $S_{p}(N)=\Psi^{-1}\left(T_{p}(C)\right)$, hence $S_{p}(N)$ is a submodule of M. Also if the determinant of every submatrix $k \times k$ of C is in p, by [5, Lemma $1.5(\mathrm{iii})], T_{p}(C)=F$ and hence $S_{p}(N)=\Psi^{-1}(F)=M$.

Lemma 1.4. Let $A=[\Psi]_{\alpha}^{\beta}, N=\left\langle y_{1}, \ldots, y_{k}\right\rangle(k<n)$, and p be a prime ideal of R. Let $B=\left[T_{1} \cdots T_{k}\right] \in M_{k \times n}(R)$ and $C=B A$.
i) If $y \in S_{p}(N)$, then $\operatorname{det} C\left(j_{1}, \ldots, j_{k}\right) y \in p M+N$ for all submatrices $C\left(j_{1}, \ldots, j_{k}\right)$ of C.
ii) If there exists a submatrix $C\left(j_{1}, \ldots, j_{k}\right) \in M_{k \times k}(R)$ of C such that $\operatorname{det} C\left(j_{1}, \ldots, j_{k}\right) \notin p$ and $\langle A\rangle \nsubseteq T_{p}(C)$, then $S_{p}(N)$ is a p^{\prime}-prime submodule of M such that $p \subseteq p^{\prime}$, where $\left(S_{p}(N): M\right)=p^{\prime}$.
Proof. i) Let $y=\sum_{i=1}^{n} t_{i} x_{i} \in S_{p}(N)$ and $C\left(j_{1}, \ldots, j_{k}\right) \in M_{k \times k}(R)$ be a submatrix of C. Then $\left(t_{1}, \ldots, t_{n}\right) A \in T_{p}(C)$ and by [5, Lemma 1.5(ii)], $X=$ $\operatorname{det} C\left(j_{1}, \ldots, j_{k}\right)\left(t_{1}, \ldots, t_{n}\right) A \in p F+\langle C\rangle$. So there exist $X^{\prime} \in p F$ and $Y^{\prime} \in\langle C\rangle$ such that $X=X^{\prime}+Y^{\prime}$. By Lemma 1.3, $X^{\prime}=X-Y^{\prime} \in p F \cap\langle A\rangle=$ $p\langle A\rangle$ and hence there exist $v_{i} \in p(1 \leq i \leq n)$ and $z_{i} \in R(1 \leq i \leq k)$ such that $X=\left(v_{1}, \ldots, v_{n}\right) A+\left(z_{1}, \ldots, z_{k}\right) C$. Since $C=B A$ and $X=$ $\operatorname{det} C\left(j_{1}, \ldots, j_{k}\right)\left(t_{1}, \ldots, t_{n}\right) A$, we have $\Psi\left(\operatorname{det} C\left(j_{1}, \ldots, j_{k}\right) \sum_{i=1}^{n} t_{i} x_{i}\right)=X=$ $\Psi\left(\sum_{i=1}^{n} v_{i} x_{i}+\sum_{i=1}^{k} z_{i} y_{i}\right)$. Since Ψ is a monomorphism, we have

$$
\operatorname{det} C\left(j_{1}, \ldots, j_{k}\right) y=\sum_{i=1}^{n} v_{i} x_{i}+\sum_{i=1}^{k} z_{i} y_{i} \in p M+N
$$

ii) Let $C\left(j_{1}, \ldots, j_{k}\right) \in M_{k \times k}(R)$ be a submatrix of C such that $\operatorname{det} C\left(j_{1}, \ldots\right.$, $\left.j_{k}\right) \notin p$. Let $S_{p}(N)=M$. So $R=\left(S_{p}(N): M\right)=\left(T_{p}(C):\langle A\rangle\right)$ and hence $\langle A\rangle \subseteq T_{p}(C)$, which is a contradiction. Thus $S_{p}(N) \neq M$. By [5, Lemma $1.5(\mathrm{iv})], T_{p}(C)$ is a p-prime submodule of F and hence $S_{p}(N)=\Psi^{-1}\left(T_{p}(C)\right)$ is a prime submodule of M. Let $\left(S_{p}(N): M\right)=p^{\prime}$. Now we have $p=\left(T_{p}(C)\right.$: $F) \subseteq\left(T_{p}(C):\langle A\rangle\right)=\left(S_{p}(N): M\right)=p^{\prime}$.

Theorem 1.5. Let $A=[\Psi]_{\alpha}^{\beta}, N=\langle\eta\rangle$ and p be a prime ideal of R. Then
i) N is a p-prime submodule of M if and only if $(N: M)=p$ and $N=p M$ or there exists a positive integer $k<n, y_{i} \in \eta(1 \leq i \leq k)$ such that $N=S_{p}(L)$, where $L=\left\langle y_{1}, \ldots, y_{k}\right\rangle$.
ii) Let N be a p-prime submodule of $M, N \neq p M$ and k be a positive integer in part (i). Suppose that for every submodule $H=\left\langle z_{1}, \ldots, z_{k}\right\rangle$, $z_{i} \in N(1 \leq i \leq k), z_{i}=\sum_{j=1}^{n} s_{i j} x_{j}, D=\left[s_{i j}\right]_{k \times n}, E=D A$ such that $\langle A\rangle \nsubseteq T_{p}(E)$ and $\operatorname{det} E\left(j_{1}, \ldots, j_{k}\right) \notin p$ for some $j_{1}, \ldots, j_{k} \in\{1, \ldots, n\}$. Then $N=S_{p}(H)$.
iii) Let N and N^{\prime} be p-prime submodules of M and $N, N^{\prime} \neq p M$. Suppose that $N^{\prime} \varsubsetneqq N$ and $k_{N}, k_{N^{\prime}}$ are positive integers for N and N^{\prime} in part (i). Then $k_{N^{\prime}}<k_{N}$.

Proof. i) Suppose that N is a p-prime submodule of M and $N \neq p M$. Let θ be the collection of all positive integers m such that there exists a submodule $L=\left\langle y_{1}, \ldots, y_{m}\right\rangle$ for some $y_{i} \in \eta(1 \leq i \leq m)$, such that $\operatorname{det} C\left(j_{1}, \ldots, j_{m}\right) \notin p$ for some $j_{1}, \ldots, j_{m} \in\{1, \ldots, n\}$, where $B=\left[T_{1} \cdots T_{m}\right]$ and $C=B A$. Since $N \neq p M, 1 \in \theta$ and hence $\theta \neq \emptyset$. By the proof of Lemma 1.2, every element of θ is less than n. In particular, $\max (\theta)<n$. Now let $k=\max (\theta)$. Now there exists a submodule $L=\left\langle y_{1}, \ldots, y_{k}\right\rangle$ for some $y_{i} \in \eta(1 \leq i \leq k)$, such that $\operatorname{det} C\left(j_{1}, \ldots, j_{k}\right) \notin p$ for some $j_{1}, \ldots, j_{k} \in\{1, \ldots, n\}$, where $B=\left[T_{1} \cdots T_{k}\right]$ and $C=B A$. Now we show that $N=S_{p}(L)$. Let $y \in S_{p}(L)$. Then by Lemma 1.4(i), $\operatorname{det} C\left(j_{1}, \ldots, j_{k}\right) y \in p M+L \subseteq N$. Since $\operatorname{det} C\left(j_{1}, \ldots, j_{k}\right) \notin p$ and N is a p-prime submodule of M, we have $y \in N$. Thus $S_{p}(L) \subseteq N$. If $\langle A\rangle \subseteq T_{p}(C)$, then $M \subseteq S_{p}(L) \subseteq N$ and so $N=M$, which is a contradiction. So $\langle A\rangle \nsubseteq$ $T_{p}(C)$ and by Lemma $1.4(\mathrm{ii}), S_{p}(L)$ is a prime submodule of M. Now since $k=\max (\theta), \eta \subseteq S_{p}(L)$ and hence $N \subseteq S_{p}(L)$. Thus $N=S_{p}(L)$. Conversely, suppose that $N=p M$. By [1, Corollary 2.3], $p M$ is a p-prime submodule of M. Assume that there exist positive integer $k<n$ and $L=\left\langle y_{1}, \ldots, y_{k}\right\rangle$, $B=\left[T_{1} \cdots T_{k}\right], C=B A$ such that $N=S_{p}(L)$. If $\operatorname{det} C\left(i_{1}, \ldots, i_{k}\right) \in p$ for every $i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}$, then by the statement just prior to Lemma $1.4, N=M$. So $(N: M)=R$, which is a contradiction. Therefore there exists a submatrix $C\left(j_{1}, \ldots, j_{k}\right)$ of C such that $\operatorname{det} C\left(j_{1}, \ldots, j_{k}\right) \notin p$. On the other hand, since $N \neq M,\langle A\rangle \nsubseteq T_{p}(C)$ and by Lemma 1.4(ii), N is a p-prime submodule of M.
ii) By part (i), there exist $y_{i} \in \eta(1 \leq i \leq k)$, and $L=\left\langle y_{1}, \ldots, y_{k}\right\rangle$ such that $N=S_{p}(L)$. Let $B=\left[T_{1} \cdots T_{k}\right]$ and $C=B A$. By [5, Proposition 1.7], $T_{p}(E)=T_{p}(C)$. So $N=S_{p}(L)=\Psi^{-1}\left(T_{p}(C)\right)=\Psi^{-1}\left(T_{p}(E)\right)=S_{p}(H)$.
iii) By the proofs of parts (i) and (ii), there exist matrices C and C^{\prime} such that $N=\Psi^{-1}\left(T_{p}(C)\right)$ and $N^{\prime}=\Psi^{-1}\left(T_{p}\left(C^{\prime}\right)\right)$. Let $P=T_{p}(C)$ and $P^{\prime}=T_{p}\left(C^{\prime}\right)$. We have $k_{N}=k_{P}$ and $k_{N^{\prime}}=k_{P^{\prime}}$. Now the proof follows by [5, Proposition 1.8].

Corollary 1.6. Let R be a domain, $A=[\Psi]_{\alpha}^{\beta}, N=\left\langle y_{1}, \ldots, y_{k}\right\rangle(k<n)$ and $\operatorname{det} A \neq 0$. Suppose that $B=\left[T_{1} \cdots T_{k}\right] \in M_{k \times n}(R)$ and $C=B A$ such that $\operatorname{rank} C=k$ and $\langle A\rangle \nsubseteq T_{(0)}(C)$. Then N is a prime submodule of M if and only if $N=S_{(0)}(N)$.

Proof. By Lemma $1.2(\mathrm{iii}),(N: M)=0$. Since $\operatorname{rank} C=k$, there exists a submatrix $C\left(j_{1}, \ldots, j_{k}\right) \in M_{k \times k}(R)$ such that $\operatorname{det} C\left(j_{1}, \ldots, j_{k}\right) \neq 0$. Now the proof follows from Theorem 1.5(i).

Let N be a p-prime submodule of an R-module M. We recall that the p-height of N is equal to n and denoted by $p-h t(N)$, if there exists a chain $N_{0} \varsubsetneqq N_{1} \varsubsetneqq \cdots \varsubsetneqq N_{n}=N$ of p-prime submodules of M with maximal length.
Proposition 1.7. Let $A=[\Psi]_{\alpha}^{\beta}$ and $N=\langle\eta\rangle$. If N is a p-prime submodule of M and k_{N} is the positive integer in Theorem 1.5(i), then $p-h t(N)=k_{N}$.
Proof. Note that if $N=p M$, then $p-h t(N)=0$. We define $k_{N}=0$. Thus $p-h t(N)=k_{N}$. Now assume that $k_{N} \geq 1$. We shall use induction on k_{N} to prove the proposition. Let $k_{N}=1$. Suppose that L is a p-prime submodule of M with $L \varsubsetneqq N$. If $L \neq p M$, since $p M \varsubsetneqq L \varsubsetneqq N$, then $0<k_{L}<1$, which is a contradiction. Thus $L=p M$ and hence $p-h t(N)=1$. Assume that the assertion is true for any $k_{N}, 1 \leq k_{N} \leq m-1$. Suppose that $k_{N}=m$. Then there exists a submodule $L=\left\langle y_{1}, \ldots, y_{m}\right\rangle, y_{i} \in \eta(1 \leq i \leq m)$ such that $N=S_{p}(L)$ and $\operatorname{det} C\left(j_{1}, \ldots, j_{m}\right) \notin p$ for some $j_{1}, \ldots, j_{m} \in\{1, \ldots, n\}$, $B=\left[T_{1} \cdots T_{m}\right]$ and $C=B A$. Let $L^{\prime \prime}=\left\langle y_{1}, \ldots, y_{m-1}\right\rangle, B^{\prime \prime}=\left[T_{1} \cdots T_{m-1}\right]$ and $C^{\prime \prime}=B^{\prime \prime} A$. Since $\operatorname{det} C\left(j_{1}, \ldots, j_{m}\right) \notin p$, there exists an $(m-1) \times(m-1)$ submatrix, $C^{\prime \prime}\left(s_{1}, \ldots, s_{m-1}\right)$ of $C\left(j_{1}, \ldots, j_{m}\right)$ with $\operatorname{det} C^{\prime \prime}\left(s_{1}, \ldots, s_{m-1}\right) \notin p$. Now by Lemma 1.4(ii), $S=S_{p}\left(L^{\prime \prime}\right)$ is a p^{\prime}-prime submodule of M. Since $S \subseteq N, p=p^{\prime}$. By the induction hypothesis, $p-h t(S)=m-1$. So there exists a chain of p-prime submodules $N_{0}=p M \varsubsetneqq N_{1} \varsubsetneqq \cdots \varsubsetneqq N_{m-1}=S \varsubsetneqq N_{m}=N$ of length m and hence p-ht $(N) \geq m$. Now let $N_{0}=p M \varsubsetneqq N_{1} \varsubsetneqq \cdots \varsubsetneqq N_{l-1} \varsubsetneqq$ $N_{l}=N$ be a chain of p-prime submodules of M. Then $k_{N_{l-1}}<k_{N}=m$ and by the induction hypothesis, $l-1 \leq k_{N_{l-1}}<m$. Thus $l \leq m$ and hence $p-h t(N)=m$. Therefore $p-h t(N)=k_{N}$.

In the rest of this section we describe the structure of prime submodules of a finitely generated projective module over a UFD and a Dedekind domain.

Theorem 1.8. Let R be a UFD (respectively, Dedekind domain), $A=[\Psi]_{\alpha}^{\beta}$ and $N=\left\langle y_{1}, \ldots, y_{k}\right\rangle(k \leq n)$. Suppose that $B=\left[T_{1} \cdots T_{k}\right] \in M_{k \times n}(R), C=B A$ and $\operatorname{rank} C=k$. We have
i) If $k<n$, then N is a prime submodule of M if and only if a $G C D$ of (respectively, the ideal generated by) the determinants of all $k \times k$ submatrices of C, is 1 (respectively, R).
ii) If $k=n$, then N is a prime submodule of M if and only if there exist an irreducible element $p \in R$ (respectively, a prime ideal p of R), a unit $u \in R$ and a positive integer $\alpha \leq n$ such that $\langle\operatorname{det} C\rangle=u p^{\alpha}$ and a $G C D$ of (respectively, the ideal generated by) entries of C^{\prime} is $p^{\alpha-1}$.

Proof. Let $T=\langle\xi(A)\rangle$ be a submodule of $F=R^{n}$. Since Ψ is a monomorphism, $N \simeq T$. Now the proof (i) and (ii), follows by [2, Theorem 2.5] (respectively, [5, Theorem 2.2]).

Example 1.9. Let $R=\mathbb{Z}[\sqrt{10}]$. We know that R is a Dedekind domain but it is not a $U F D$. Let $M=R\left(\frac{1}{2}\right)+R\left(\frac{1}{3}\right)$. By [4, Theorem VIII, 6.8], M is a projective R-module. We define $\Phi: R^{2} \rightarrow M$ by $\Phi((1,0))=\frac{1}{2}$ and $\Phi((0,1))=$ $\frac{1}{3}$. We define $\Psi: M \rightarrow R^{2}$ by $\Psi\left(\frac{1}{2}\right)=(3,-3)$ and $\Psi\left(\frac{1}{3}\right)=(2,-2)$. So by Lemma 1.1, $M \simeq\langle A\rangle$, where $A=\left(\begin{array}{c}3 \\ 2 \\ 2\end{array}-2\right) \in M_{2 \times 2}(R)$. Let $N=\left\langle\frac{1}{2} t_{1}+\frac{1}{3} t_{2}\right\rangle$, where $t_{1}=x_{1}+x_{2} \sqrt{10}$ and $t_{2}=y_{1}+y_{2} \sqrt{10}, x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{Z}$. We have, $B=\left[t_{1} t_{2}\right]_{1 \times 2}$ and $C=B A=\left[3 t_{1}+2 t_{2}-3 t_{1}-2 t_{2}\right]_{1 \times 2}$. Let $J=R\left(3 t_{1}+2 t_{2}\right)$. Then by Theorem 1.8, N is prime if and only if $J=R$ if and only if $3 t_{1}+2 t_{2}$ is a unit element of R. For example, let $t_{1}=3+\sqrt{10}$ and $t_{2}=-3-\sqrt{10}$. Then $3 t_{1}+2 t_{2}=3+\sqrt{10}$ and $(3+\sqrt{10})(-3+\sqrt{10})=1$. So $3 t_{1}+2 t_{2}$ is a unit element of R and hence $N=\left\langle\frac{1}{2}(3+\sqrt{10})+\frac{1}{3}(-3-\sqrt{10})\right\rangle=\left\langle\frac{1}{2}+\frac{1}{6} \sqrt{10}\right\rangle$ is a prime submodule of M.

2. Primary decomposition of submodules of a finitely generated projective module

In this section we describe a primary decomposition of a submodule of a finitely generated projective module over a domain.

Let $A=[\Psi]_{\alpha}^{\beta}, N=\left\langle y_{1}, \ldots, y_{k}\right\rangle(k<n)$, and Q be a p-primary ideal of R containing $\Re_{\xi(A)}$. Let $B=\left[T_{1} \cdots T_{k}\right]$ and $C=B A$.

Put $T_{Q}(B)=\left\{T=\left(t_{1}, \ldots, t_{n}\right) \in F \mid \operatorname{det} \beta\left(i_{1}, \ldots, i_{k+1}\right) \in Q\right.$ for every $\left.i_{1}, \ldots, i_{k+1} \in\{1, \ldots, n\}\right\}$, where $\beta=\left[T T_{1} \cdots T_{k}\right] \in M_{(k+1) \times n}(R)$ and $S_{Q}(N)$ $=\left\{y=\sum_{i=1}^{n} t_{i} x_{i} \in M \mid\left(t_{1}, \ldots, t_{n}\right) A \in T_{Q}(C)\right\}$. As an observations before Lemma 1.4, $S_{Q}(N)$ is a submodule of M. Also if the determinant of every $k \times k$ submatrix of C is in $Q, S_{Q}(N)=M$.

Lemma 2.1. Let $A=[\Psi]_{\alpha}^{\beta}, N=\left\langle y_{1}, \ldots, y_{k}\right\rangle(k<n)$, and Q be a p-primary ideal of R containing $\Re_{\xi(A)}$. Let $B=\left[T_{1} \cdots T_{k}\right]$ and $C=B A$. We have
i) If $y=\sum_{i=1}^{n} t_{i} x_{i} \in S_{Q}(N)$, then for every submatrix $C\left(j_{1}, \ldots, j_{k}\right)$ of $C, \operatorname{det} C\left(j_{1}, \ldots, j_{k}\right) y \in Q M+N$.
ii) If $\langle A\rangle \nsubseteq S_{Q}(N)$ and there exists a submatrix $C\left(j_{1}, \ldots, j_{k}\right)$ of C such that $\operatorname{det} C\left(j_{1}, \ldots, j_{k}\right) \notin Q$, then $S_{Q}(N)$ is p^{\prime}-primary submodule of M such that $p \subseteq p^{\prime}$.

Proof. The proof is similar to the proof of Lemma 1.4.
Remark. Let $A=[\Psi]_{\alpha}^{\beta}$ and $N=\langle\eta\rangle$. Suppose that N is a p-primary submodule of M with $(N: M)=Q$ and $\eta \not \subset Q M$. Let θ be the collection of all positive integers m such that there exist a submodule $L=\left\langle y_{1}, \ldots, y_{m}\right\rangle$ and a submatrix $C\left(j_{1}, \ldots, j_{m}\right)$ such that $\operatorname{det} C\left(j_{1}, \ldots, j_{m}\right) \notin Q$ for some $j_{1}, \ldots, j_{m} \in\{1, \ldots, n\}$. Since $\eta \not \subset Q M$, then $1 \in \theta$. Let $k=\max \theta$. Since $\Re_{\xi(A)} \subseteq Q, k<n$. Assume that $L=\left\langle y_{1}, \ldots, y_{k}\right\rangle$ with $\operatorname{det} C\left(j_{1}, \ldots, j_{k}\right) \notin Q$ for some $j_{1}, \ldots, j_{k} \in$ $\{1, \ldots, n\}$. If $y \in S_{Q}$, then by Lemma 2.1(i), $\operatorname{det} C\left(s_{1}, \ldots, s_{k}\right) y \in Q M+N \subset N$ for all $s_{1}, \ldots, s_{k} \in\{1, \ldots, n\}$. So, if $\operatorname{det} C\left(s_{1}, \ldots, s_{k}\right) \notin p$ for some $s_{1}, \ldots, s_{k} \in$
$\{1, \ldots, n\}$, then $S_{Q} \subseteq N$. Now by Lemma 2.1(ii), S_{Q} is a p^{\prime}-primary submodule of M with $N \subseteq S_{Q}$. Thus $N=S_{Q}$.

Theorem 2.2. Let R be a domain, $A=[\Psi]_{\alpha}^{\beta}$ and $N=\langle\eta\rangle$. Suppose that N is a proper submodule of M with $|\Omega| \geq n$. Let $\Re_{\xi(A)}$ be a nonzero ideal of R such that $\Re_{\xi(A)}=R E_{j_{1} \cdots j_{n}}$ for some $j_{1}, \ldots, j_{n} \in \Omega$, where $E_{j_{1} \cdots j_{n}}=$ $\operatorname{det}\left[T_{i_{1}} \cdots T_{i_{n}}\right] A$. Suppose that $\Re_{\xi(A)}=\bigcap_{i=1}^{m} Q_{i}$ is a minimal primary decomposition of $\Re_{\xi(A)}$ with $\operatorname{Ass}\left(\Re_{\xi(A)}\right)=\left\{p_{i}\right\}_{i=1}^{m}$ and $S_{Q_{i}}$ as above is a submodule of M with $\sqrt{\left(S_{Q_{i}}: M\right)}=p_{i}^{\prime}$. Let $\left\{q_{i}\right\}_{i=1}^{t}=\left\{p_{i}^{\prime} \mid\langle A\rangle \nsubseteq T_{Q_{i}}\right\}$. Then
a) $\bigcap_{i=1}^{t} S_{Q_{i}}$ is a primary decomposition of N.
b) If $\left\{q_{i}\right\}_{i=1}^{t}$ has no embedded prime ideal, then $\bigcap_{i=1}^{t} S_{Q_{i}}$ is a minimal primary decomposition of N with $\operatorname{Ass}(N)=\left\{q_{i}\right\}_{i=1}^{t}$.
c) Let $i \in\{1, \ldots, m\}$. There exist submodules $L_{i}=\left\langle y_{1}(i), \ldots, y_{k_{i}}(i)\right\rangle$ of N such that $y_{l}(i) \in \eta\left(1 \leq l \leq k_{i}\right), \operatorname{det} C_{i}\left(j_{i 1}, \ldots, j_{i k_{i}}\right) \notin Q_{i}$, for some $j_{i 1}, \ldots, j_{i k_{i}} \in\{1, \ldots, n\}$ and $S_{Q_{i}}=S_{Q_{i}}\left(L_{i}\right)$. If there exists $C_{i}\left(s_{i 1}, \ldots, s_{i k_{i}}\right)$ for some $s_{i 1}, \ldots, s_{i k_{i}} \in\{1, \ldots, n\}$ such that

$$
\operatorname{det} C_{i}\left(s_{i 1}, \ldots, s_{i k_{i}}\right) \notin p_{i}
$$

for all $i \in\{1, \ldots, m\}$, and for every $i, j \in\{1, \ldots, t\}$, $q_{i} \neq q_{j}$, then $\bigcap_{i=1}^{t} S_{Q_{i}}$ is a minimal primary decomposition of N with $\operatorname{Ass}(N)=$ $\left\{q_{i}\right\}_{i=1}^{t}$.

Proof. a) By [5, Theorem 3.2(a)], $\langle C\rangle=\bigcap_{i=1}^{m} T_{Q_{i}}$. Then

$$
N=\Psi^{-1}(\langle C\rangle)=\bigcap_{i=1}^{m} \Psi^{-1}\left(T_{Q_{i}}\right)=\bigcap_{i=1}^{m} S_{Q_{i}}=\bigcap_{i=1}^{t} S_{Q_{i}} .
$$

b) Suppose that $\bigcap_{1=i \neq j}^{t} S_{Q_{i}} \subseteq S_{Q_{j}}$ for some $j(1 \leq j \leq m)$. Then $\sqrt{\left(\bigcap_{1=i \neq j}^{t} S_{Q_{i}}: M\right)} \subseteq \sqrt{\left(S_{Q_{j}}: M\right)}$ and hence $\bigcap_{1=i \neq j}^{t} q_{i} \subseteq q_{j}$. It follows that $q_{i} \subseteq q_{j}$ for some $i(1 \leq i \leq m), i \neq j$, which is a contradiction.
c) Suppose that $\bigcap_{1=i \neq j}^{t} S_{Q_{i}} \subset S_{Q_{j}}$ for some $j(1 \leq j \leq t)$. Then $\bigcap_{i=1}^{m} T_{Q_{i}} \subset$ $\bigcap_{i=1}^{t} T_{Q_{i}} \subset T_{Q_{j}}$ and by [5, Theorem 3.2(c)], it is a contradiction.

Corollary 2.3. Let R be a Dedekind domain, $A=[\Psi]_{\alpha}^{\beta}$ and $N=\left\langle y_{1}, \ldots, y_{n}\right\rangle$. Let $B=\left[T_{1} \cdots T_{n}\right], C=B A$ and rank $C=n$. Then $\bigcap_{i=1}^{k} S_{p_{i}^{\alpha_{i}}}$ is a minimal primary decomposition of N for some distinct maximal ideals p_{1}, \ldots, p_{k} of R.

Proof. Since R is a Dedekind domain, by [5, Corollary 3.3], there exist distinct maximal ideals q_{1}, \ldots, q_{t} of R and $\alpha_{i} \in \mathbb{N}$ such that $\langle C\rangle=\bigcap_{i=1}^{t} T_{q_{i}{ }_{i}}$ is a minimal primary decomposition of $\langle C\rangle$. Since Ψ is a monomorphism, $N=\Psi^{-1}(\langle C\rangle)=\Psi^{-1}\left(\bigcap_{i=1}^{t} T_{q_{i}{ }^{\alpha_{i}}}\right)=\bigcap_{i=1}^{t} S_{q_{i} \alpha_{i}}$. Let $\left\{p_{1}, \ldots, p_{k}\right\}=\left\{q_{i} \mid\langle A\rangle \nsubseteq\right.$ $\left.T_{q_{i}^{\alpha_{i}}}\right\}$. Now by Lemma 2.1(ii) and since R is a Dedekind domain, $N=\bigcap_{i=1}^{k} S_{p_{i}^{\alpha_{i}}}$ is a minimal primary decomposition of N and $\operatorname{Ass}(N)=\left\{p_{1}, \ldots, p_{k}\right\}$.

3. Radical of a submodule of a finitely generated projective module

In this section we characterize the radical of an arbitrary submodule of a finitely generated projective module M over a commutative ring R with identity. Also we study submodules of M which satisfy the radical formula.

Let $A=[\Psi]_{\alpha}^{\beta}$ and $N=\langle\eta\rangle$. We put

$$
\left[T_{1} A \cdots T_{m} A\right]_{m}=\sum_{j_{1}, \ldots, j_{m} \in\{1, \ldots, n\}} R \operatorname{det} C\left(j_{1}, \ldots, j_{m}\right)
$$

where $C=\left[T_{1} A \cdots T_{m} A\right]$ and $\Re_{t}=\sum_{i_{1}, \ldots, i_{t} \in \Omega} R\left[T_{i_{1}} A \ldots T_{i_{t}} A\right]_{t}(1 \leq t \leq n)$. Note that $\Re_{1} \supseteq \Re_{2} \supseteq \cdots \supseteq \Re_{n}=\Re_{\xi(A)}$.

Let M be an R-module, p be a prime ideal of R and N be a submodule of M. In [7], Pusat-Yilmaz and Smith defined the submodule $K(N, p)=\{m \in$ $M \mid c m \in N+p M$ for some $c \in R \backslash p\}$. They showed that this is the smallest p-prime submodule of M containing N and so $\operatorname{Rad}_{M} N=\cap\{K(N, p) \mid p$ is a prime ideal of $R\}$.

Lemma 3.1. Let $A=[\Psi]_{\alpha}^{\beta}, p$ be a prime ideal of R and $N=\langle\eta\rangle$. We have
i) If $(N: M) \nsubseteq p$, then $K(N, p)=M$.
ii) If $\Re_{1} \subseteq p$ and $(p M: M)=p$, then $K(N, p)=p M$.
iii) If $p \neq 0$ is a maximal ideal of $R, \Re_{1} \nsubseteq p$ and $K(N, p) \neq M$, then there exist a positive integer $k<n$ and a submodule $L=\left\langle y_{1}, \ldots, y_{k}\right\rangle, y_{i} \in \eta$ $(1 \leq i \leq k)$ such that $K(N, p)=S_{p}(L)$.

Proof. i) Let p be a prime ideal of R. Assume that $(N: M)$ is not contained in p and $c \in(N: M) \backslash p$. So $c M \subseteq N$ and hence $M \subseteq K(N, p)$.
ii) Let $\Re_{1} \subseteq p$. Since $p M$ contains N, by [1, Corollary 2.3], $p M$ is a p-prime submodule of M. So $K(N, p)=p M$.
iii) Let \Re_{1} be not contained in p. Suppose that θ is the set of all positive integers m such that there exist a submodule $L=\left\langle y_{1}, \ldots, y_{m}\right\rangle$ for some $y_{i} \in \eta$ $(1 \leq i \leq m)$, and a submatrix $C\left(j_{1}, \ldots, j_{m}\right)$ such that $\operatorname{det} C\left(j_{1}, \ldots, j_{m}\right) \notin p$ for some $j_{1}, \ldots, j_{m} \in\{1, \ldots, n\}$, where $B=\left[T_{1} \ldots T_{m}\right]$ and $C=B A$. Since $\Re_{1} \nsubseteq$ $p, \eta \not \subset p M$ and hence $1 \in \theta$. Thus $\theta \neq \emptyset$. Let $k=\max (\theta)$. By Lemma 1.2(i), we have $k<n$. Suppose that $L=\left\langle y_{1}, \ldots, y_{k}\right\rangle$ is a submodule of M such that $\operatorname{det} C\left(j_{1}, \ldots, j_{k}\right) \notin p$ for some $j_{1}, \ldots, j_{k} \in\{1, \ldots, n\}$, where $B=\left[T_{1} \cdots T_{k}\right]$ and $C=B A$. By Lemma $1.4(\mathrm{i}), S_{p}(L) \subseteq K(N, p)$. So $\langle A\rangle \nsubseteq S_{p}(L)$ and by Lemma 1.4(ii), we have $S_{p}(L)$ is a prime submodule of M. Since $p \neq 0$ is maximal ideal, $\left(S_{p}(L): M\right)=p$. Thus $K(N, p) \subseteq S_{p}(L)$. Therefore $K(N, p)=S_{p}(L)$.

Let F be the free R-module R^{n} and $W=\langle\xi\rangle$. By [6, Theorem 2.4], $\operatorname{Rad}_{F} W=\left\{T=\left(t_{1}, \ldots, t_{n}\right) \in \sqrt{\Re_{1}} F \mid\left[T T_{i_{1}} \cdots T_{i_{k-1}}\right]_{k} \subseteq \sqrt{\Re_{k}}\right.$ for every $\left.i_{1}, \ldots, i_{k-1} \in \Omega, 2 \leq k \leq n\right\}$, where $\Re_{k}=\sum_{i_{1}, \ldots, i_{k} \in \Omega} R\left[T_{i_{1}} \ldots T_{i_{k}}\right]_{k}$ and $\left[T T_{i_{1}} \cdots T_{i_{k-1}}\right]_{k}=\sum_{j_{1}, \ldots, j_{k} \in\{1, \ldots, n\}} R \operatorname{det} B\left(j_{1}, \ldots, j_{k}\right)$ with $B=\left[T T_{i_{1}} \ldots\right.$ $\left.T_{i_{k-1}}\right]$.

Theorem 3.2. Let $A=[\Psi]_{\alpha}^{\beta}$ and $N=\langle\eta\rangle$. Then $\operatorname{Rad}_{M} N=\left\{y=\sum_{i=1}^{n} t_{i} x_{i} \in\right.$ $\left.M \mid\left(t_{1}, \ldots, t_{n}\right) A \in \operatorname{Rad}_{F} T\right\}$, where $T=\langle\xi(A)\rangle$.

Proof. We know that $\operatorname{Rad}_{M} N=\bigcap_{p} K(N, p)$. At first we will show that $K(T, p) \cap\langle A\rangle=\Psi(K(N, p))$ for every prime ideal p of R. Let $y=\sum_{i=1}^{n} t_{i} x_{i} \in$ $K(N, p)$. There exists $c \in R-p$ such that $c y=\sum_{i=1}^{n} c t_{i} x_{i} \in N+p M$. So there exist $m \in \mathbf{N}, k_{i} \in R(1 \leq i \leq m)$ and $l_{j} \in p(1 \leq j \leq n)$ such that $\sum_{i=1}^{n} c t_{i} x_{i}=\sum_{i=1}^{m} k_{i} y_{i}+\sum_{j=1}^{n} l_{j} x_{j}=\sum_{i=1}^{m} k_{i}\left(\sum_{j=1}^{n} t_{i j} x_{j}\right)+\sum_{j=1}^{n} l_{j} x_{j}=$ $\sum_{j=1}^{n} \sum_{i=1}^{m} k_{i} t_{i j} x_{j}+\sum_{j=1}^{n} l_{j} x_{j}$. Now we have

$$
\begin{aligned}
c \Psi(y) & =\Psi(c y) \\
& =\left(\sum_{i=1}^{m} k_{i} t_{i 1}, \ldots, \sum_{i=1}^{m} k_{i} t_{i n}\right) A+\left(l_{1}, \ldots, l_{n}\right) A \in T+p\langle A\rangle \subseteq T+p F .
\end{aligned}
$$

So $\Psi(y) \in K(T, p) \cap\langle A\rangle$ and hence $\Psi(K(N, p)) \subseteq K(T, p) \cap\langle A\rangle$. Conversely, let $Y \in K(T, p) \cap\langle A\rangle$. There exist $c \in R-p$ and $l_{j} \in R(1 \leq j \leq n)$ such that $Y=\left(l_{1}, \ldots, l_{n}\right) A$ and $c Y=\left(c l_{1}, \ldots, c l_{n}\right) A \in T+p F$. So there exist $m \in \mathbb{N}$, $k_{i} \in R, T_{i} A \in T(1 \leq i \leq m)$ and $z_{i} \in p(1 \leq i \leq n)$ such that $\left(c l_{1}, \ldots, c l_{n}\right) A=$ $\left(k_{1}, \ldots, k_{n}\right) B A+\left(z_{1}, \ldots, z_{n}\right)$, where $B=\left[T_{1} \cdots T_{m}\right]$. So by Lemma 1.3, $\left(z_{1}, \ldots, z_{n}\right) \in p F \cap\langle A\rangle=p\langle A\rangle$. Then there exists $z_{i}^{\prime} \in p(1 \leq i \leq n)$ such that $\left(z_{1}, \ldots, z_{n}\right)=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right) A$ and hence $\left(c l_{1}, \ldots, c l_{n}\right) A=\left(\left(k_{1}, \ldots, k_{n}\right) B+\right.$ $\left.\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)\right) A$. Thus $\Psi\left(\sum_{i=1}^{n} c l_{i} x_{i}\right)=\Psi\left(\sum_{i=1}^{m} k_{i} y_{i}+\sum_{i=1}^{n} z_{i}^{\prime} x_{i}\right)$. Since Ψ is a monomorphism, we have $\sum_{i=1}^{n} c l_{i} x_{i}=\sum_{i=1}^{m} k_{i} y_{i}+\sum_{i=1}^{n} z_{i}^{\prime} x_{i}$ and hence $c\left(\sum_{i=1}^{n} l_{i} x_{i}\right) \in N+p M$. Now we have

$$
\sum_{i=1}^{n} l_{i} x_{i} \in K(N, p)
$$

So $Y=\Psi\left(\sum_{i=1}^{n} l_{i} x_{i}\right) \in \Psi(K(N, p))$ and hence $K(T, p) \cap\langle A\rangle=\Psi(K(N, p))$. Since for every $y=\sum_{i=1}^{n} t_{i} x_{i} \in M, \Psi(y) \in\langle A\rangle$, we have $y \in \operatorname{Rad}_{M} N$ if and only if $y \in \bigcap_{p} K(N, p)$ if and only if $\Psi(y) \in \bigcap_{p} K(T, p)$ if and only if $\left(t_{1}, \ldots, t_{n}\right) A \in \bigcap_{p} K(T, p)$ if and only if $\left(t_{1}, \ldots, t_{n}\right) A \in \operatorname{Rad}_{F} T$.

Proposition 3.3. Let $A=[\Psi]_{\alpha}^{\beta}$ and $N=\langle\eta\rangle$. If there exist $m(1 \leq m \leq n-1)$, and a submodule $L=\left\langle y_{1}, \ldots, y_{m}\right\rangle$ of N for some $y_{i} \in \eta(1 \leq i \leq m)$ such that C contains an $m \times m$ submatrix whose determinant is a unit in R and $\sqrt{\Re_{m+1}}=\sqrt{(N: M)}$, where $B=\left[T_{1} \cdots T_{m}\right]$ and $C=B A$, then N s.t.r.f in M.

Proof. Suppose that there exist a submodule $L=\left\langle y_{1}, \ldots, y_{m}\right\rangle$ of N for some $y_{i} \in \eta(1 \leq i \leq m)$, and a submatrix $C\left(j_{1}, \ldots, j_{m}\right)$ for some $j_{1}, \ldots, j_{m} \in$ $\{1, \ldots, n\}$ such that $\operatorname{det} C\left(j_{1}, \ldots, j_{m}\right)$ is unit. Let $y=\sum_{i=1}^{n} t_{i} x_{i} \in \operatorname{Rad}_{M} N$ and $p=\sqrt{(N: M)}$. Then $\left[T A T_{1} A \cdots T_{m} A\right]_{m+1} \subseteq \sqrt{\Re_{m+1}}=\sqrt{(N: M)}$. If we replace the radical p in $[5$, Lemma $1.5($ ii $)]$ with $\sqrt{(N: M)}$, then $\operatorname{det} C\left(i_{1}, \ldots, i_{m}\right)$ $T A \in p F+\langle C\rangle$. Since $\operatorname{det} C\left(j_{1}, \ldots, j_{m}\right)$ is unit, $T A \in p F+\langle C\rangle$ and hence
$y \in p M+N$. It follows that $y \in \sqrt{(N: M)} M+N$ and hence $\operatorname{Rad}_{M} N=$ $\sqrt{(N: M)} M+N=\left\langle E_{M}(N)\right\rangle$.

Corollary 3.4. Let (R, m) be a local ring with m as maximal ideal, $A=[\Psi]_{\alpha}^{\beta}$ and $N=\langle\eta\rangle$. If $\Re_{j}=R$ and $\sqrt{\Re_{j+1}}=\sqrt{(N: M)}$ for some $j(1 \leq j \leq n-1)$, then N s.t.r.f in M.

Proof. Let $\Re_{j}=\sum_{i_{1}, \ldots, i_{j} \in \Omega} R\left[T_{i_{1}} A \cdots T_{i_{j}} A\right]_{j}=R$ for some $j(1 \leq j \leq n-1)$, and $\sqrt{\Re_{j+1}}=\sqrt{(N: M)}$. Since R is a local ring, there exist a submodule $L=$ $\left\langle y_{1}, \ldots, y_{j}\right\rangle$ for some $y_{1}, \ldots, y_{j} \in \eta$ and a submatrix $C\left(i_{1}, \ldots, i_{j}\right) \in M_{j \times j}(R)$ for some $i_{1}, \ldots, i_{j} \in\{1, \ldots, n\}$ such that $\operatorname{det} C\left(i_{1}, \ldots, i_{j}\right)$ is unit. Now by Proposition 3.3, N s.t.r.f in M.

Proposition 3.5. Let R be a commutative ring with identity, $A=[\Psi]_{\alpha}^{\beta}$ and $N=\langle\eta\rangle$. If $\sqrt{\Re_{1}}=\sqrt{\Re_{2}}=\cdots=\sqrt{\Re_{n-1}}=\sqrt{(T: F)}$, where $T=\langle\xi(A)\rangle$, then $\operatorname{Rad}_{M} N=\sqrt{(N: M)} M=\left\langle E_{M}(N)\right\rangle$.

Proof. Since Ψ is a monomorphism, $N \simeq T$. By [6, Proposition 2.7], we have $\operatorname{Rad}_{F} T=\sqrt{(T: F)} F=\left\langle E_{F}(T)\right\rangle$. Let $y=\sum_{i=1}^{n} t_{i} x_{i} \in \operatorname{Rad}_{M} N$. Then $X=\left(t_{1}, \ldots, t_{n}\right) A \in \operatorname{Rad}_{F} T=\sqrt{(T: F)} F$. Suppose that $I=\sqrt{(T: F)}$. By Lemma 1.3, we have $X \in I F \cap\langle A\rangle=I\langle A\rangle$. So there exists $r_{i} \in I(1 \leq i \leq$ n) such that $X=\left(r_{1}, \ldots, r_{n}\right) A$. Thus $y \in I M \subseteq \sqrt{(N: M)} M$ and hence $\operatorname{Rad}_{M} N=\sqrt{(N: M)} M=\left\langle E_{M}(N)\right\rangle$.

Acknowledgement. The authors would like to thank the referee for his/her useful suggestions that improved the presentation of this paper.

References

[1] M. Alkan and Y. Tiraş, Projective modules and prime submodules, Czechoslovak Math. J. 56(131) (2006), no. 2, 601-611. https://doi.org/10.1007/s10587-006-0041-5
[2] S. Hedayat and R. Nekooei, Characterization of prime submodules of a finitely generated free module over a PID, Houston J. Math. 31 (2005), no. 1, 75-85.
[3] , Primary decomposition of submodules of a finitely generated module over a PID, Houston J. Math. 32 (2006), no. 2, 369-377.
[4] T. W. Hungerford, Algebra, Graduate Texts in Mathematics, 73, Springer-Verlag, New York, 1980.
[5] F. Mirzaei and R. Nekooei, On prime submodules of a finitely generated free module over a commutative ring, Comm. Algebra 44 (2016), no. 9, 3966-3975. https://doi.org/10. 1080/00927872.2015.1090576
[6] , On radical formula and Prüfer domains, Bull. Iranian Math. Soc. 42 (2016), no. 3, 555-563.
[7] D. Pusat-Yılmaz and P. F. Smith, Radicals of submodules of free modules, Comm. Algebra 27 (1999), no. 5, 2253-2266. https://doi.org/10.1080/00927879908826563
Reza Nekooei
Department of Pure Mathematics
Faculty of Mathematics and Computer
Shahid Bahonar University of Kerman
Kerman, Iran
Email address: rnekooei@uk.ac.ir
Zahra Pourshafiey
Faculty of Mathematics and Computer
Shahid Bahonar University of Kerman
Kerman, Iran
Email address: zhpoorshafiee@gmail.com

[^0]: Received August 3, 2018; Revised March 10, 2019; Accepted May 2, 2019.
 2010 Mathematics Subject Classification. 13A99, 13C10, 13C99, 13F05.
 Key words and phrases. projective module, primary decomposition, Dedekind domain, prime submodule, radical of submodule, radical formula.

