References
- Z. A. Munir, D. V. Quach, and M. Ohyanagi, "Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process," J. Am. Ceram. Soc., 94 [1] 1-19 (2011). https://doi.org/10.1111/j.1551-2916.2010.04210.x
- Z. Hu, D. Zheng, R. Tu, M. Yang, Q. Li, M. Han, S. Zhang, L. Zhang, and T. Goto, "Structural Controlling of Highly-Oriented Polycrystal 3C-SiC Bulks via Halide CVD," Materials, 12 [3] 390-40 (2019). https://doi.org/10.3390/ma12030390
- W.-T. Chen, R. M. White, T. Goto, and E. C. Dickey, "Directionally Solidified Boride and Carbide Eutectic Ceramics," J. Am. Ceram. Soc., 99 [6] 1837-51 (2016). https://doi.org/10.1111/jace.14287
- A. R. West, Solid State Chemistry and its Applications; 2nd Eds, pp. 325-57, Wiley, 2014.
-
W. Li, R. Tu, and T. Goto, "Preparation of Directionally Solidified
$TiB_2-TiC$ Eutectic Composites by a Floating Zone Method," Mater. Lett., 60 [6] 839-43 (2006). https://doi.org/10.1016/j.matlet.2005.10.028 -
W. Li, R. Tu, and T. Goto, "Preparation of Directionally Solidified
$B_4C-TiB_2-SiC$ Ternary Eutectic Composites by a Floating Zone Method and Their Properties," Mater. Trans., 46 [9] 2067-72 (2005). https://doi.org/10.2320/matertrans.46.2067 -
K. Nishimoto, Y. Yokota, S. Kurosawa, Y. Fujimoto, N. Kawaguchi, K. Fukuda, and A. Yoshikawa, "Crystal Growth of
$LiF/LiYF_4$ Eutectic Crystals and Their Luminescent Properties," J. Eur. Ceram. Soc., 34 [9] 2117-21 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.02.029 -
I. Gunjishima, T. Akashi, and T. Goto, "Characterization of Directionally Solidified
$B_4C-TiB_2$ Composites Prepared by a Floating Zone Method," Mater. Trans., 43 [4] 712-20 (2002). https://doi.org/10.2320/matertrans.43.712 -
I. Gunjishima, T. Akashi, and T. Goto, "Characterization of Directionally Solidified
$B_4C-SiC$ Composites Prepared by a Floating Zone Method," Mater. Trans., 43 [9] 2309-15 (2002). https://doi.org/10.2320/matertrans.43.2309 - R. L. Ashbrook, "Directionally Solidified Ceramic Eutectics," J. Am. Ceram. Soc., 60 [9-10] 428-35 (1977). https://doi.org/10.1111/j.1151-2916.1977.tb15527.x
- J. D. Hunt, "Development in Eutectics," J. Cryst. Growth, 3-4 82-91 (1968). https://doi.org/10.1016/0022-0248(68)90103-6
- F. L. Kennard, R. C. Bradt, and V. S. Stubican; "Eutectic Solidification of MgO-TEX>$MgAl_2O_4$," J. Am. Ceram. Soc., 56 [11] 566-69 (1973). https://doi.org/10.1111/j.1151-2916.1973.tb12417.x
- E. O. Hall, "The Deformation and Aging of Mild Steel," Proc. Phys. Soc., London, Sect. B, 64 [9] 747-53 (1951). https://doi.org/10.1088/0370-1301/64/9/303
- N. J. Petch, "The Cleavage Strength of Polycrystals," J. Iron Steel Inst., 174 25-8 (1953).
- Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu, and Y. Kohtoku, "A Ductile Ceramic Eutectic Composite with High Strength at 1,873 K," Nature, 389 [4] 49-52 (1997). https://doi.org/10.1038/37937
-
Y. Ohashi, N. Yasui, T. Suzuki, M. Watanabe, T. Den, K. Kamada, Y. Yokota, and A. Yoshikawa, "Orientation Relationships of Unidirectionally Aligned
$GdAlO_3/Al_2O_3$ Eutectic Fibers," J. Eur. Ceram. Soc., 34 [15] 3849-57 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.04.042 - N. S. Jacobson, "Corrosion of Silicon-Based Ceramics in Combustion Environments," J. Am. Ceram. Soc., 76 [1] 3-28 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03684.x
-
J. Hong, K. E. Spear, and V. S. Stubican, "Directional Solidification of
$SiC-B_4C$ Eutectic: Growth and Some Properties," Mater. Res. Bull., 14 [6] 775-83 (1979). https://doi.org/10.1016/0025-5408(79)90137-5 -
T. Goto, E. Ito, M. Mukaida, and T. Hirai, "Microstructure and Seebeck Coefficient of
$SiC-B_4C$ Eutectic Ceramics," J. Jpn. Soc. Powder Powder Metall., 41 [11] 1304-7 (1994). https://doi.org/10.2497/jjspm.41.1304 -
T. Narushima, T. Goto, Y. Iguchi, and T. Hirai, "High Temperature Active Oxidation of Chemically Vapor-Deposited Silicon Carbide in an
$Ar-O_2$ Atmosphere," J. Am. Ceram. Soc., 74 [10] 2583-86 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06803.x -
I. Akin, M. Hotta, F. C. Sahin, O. Yucel, G. Gollor, and T. Goto, "Microstructure and Densification of
$ZrB_2-SiC$ Composites Prepared by Spark Plasma Sintering," J. Eur. Ceram. Soc., 29 [11] 2379-85 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.01.011 -
R. Tu, H. Hirayama, and T. Goto, "Preparation of
$ZrB_2-SiC$ Composites by Arc Melting and Their Properties," J. Ceram. Soc. Jpn., 116 [3] 431-35 (2008). https://doi.org/10.2109/jcersj2.116.431 -
W.-J. Li, R. Tu, and T. Goto, "Preparation of
$TiC-TiB_2-SiC$ Ternary Eutectic Composites by Arc-Melting and Their Characterizations," Mater. Trans., 47 [4] 1193-97 (2006). https://doi.org/10.2320/matertrans.47.1193 -
W.-J. Li, R. Tu, and T. Goto, "Preparation of
$TiC-TiB_2-SiC$ Eutectic Composite by an Arc-Melted Method and its Characterization," Mater. Trans., 46 [11] 2504-8 (2005). https://doi.org/10.2320/matertrans.46.2504 - H. Endo, M. Ueki, and H. Kubo, "Hot Pressing of SiC-TiC Composite," J. Mater. Sci., 25 2503-6 (1990). https://doi.org/10.1007/BF00638050
- T. Goto and T. Hirai, "Microstructures of SiC-TiC in-situ Composites Prepared by Chemical Vapor Deposition," J. Jpn. Soc. Powder Powder Metall., 34 [9] 487-90 (1987). https://doi.org/10.2497/jjspm.34.487
- G. Osugi, A. Ito, M. Hotta, and T. Goto, "Microstructure and Hardness of SiC-TiC Nanocomposite Thin Films Prepared by Radiofrequency Magnetron Sputtering," Thin Solid Films, 520 [18] 5851-55 (2012). https://doi.org/10.1016/j.tsf.2012.05.021
- E. J. Cheng, H. Katsui, R. Tu, and T. Goto, "Rod-like Eutectic Structure of Arc-Melted TiB2-TiCxN1-x Composite," J. Eur. Ceram. Soc., 34 [9] 2089-94 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.12.036
-
E. J. Cheng, H. Katsui, R. Tu, and T. Goto, "Long-Range Ordered Structure of Ti-B-C-N in a
$TiB_2-TiC_xN_{1-x}$ Eutectic Composite," J. Am. Ceram. Soc., 97 [8] 2423-26 (2014). https://doi.org/10.1111/jace.13118 -
E. J. Cheng, Y. Li, J. Sakamoto, S. Han, H. Sun, J. Noble, H. Katsui, and T. Goto, "Mechanical Properties of Individual Phases of
$ZrB_2-ZrC$ Eutectic Composite Measured by Nanoindentation," J. Eur. Ceram. Soc., 37 [13] 4223-27 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.05.031 -
E. J. Cheng, H. Katsui, and T. Goto, "Microstructure of
$ZrB_2-ZrN$ Directionally Solidified Eutectic Composite by Arc-Melting," J. Asian Ceram. Soc., 6 [1] 102-7 (2018). https://doi.org/10.1080/21870764.2018.1446467 -
E. J. Cheng, H. Katsui, and T. Goto, "
$ZrB_2-ZrC_xN_{1-x} $ Eutectic Composites Produced by Melt Solidification," J. Am. Ceram. Soc., 99 [2] 667-73 (2016). https://doi.org/10.1111/jace.13984 -
R. Tu, N. Li, Q. Li, S. Zhang, L. Zhang, and T. Goto, "Effect of Microstructure on Mechanical, Electrical and Thermal Properties of
$B_4C-HfB_2$ Composites Prepared by Arc Melting," J. Eur. Ceram. Soc., 36 [16] 3929-37 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.06.049 -
R. Tu, N. Li, Q. Li, S. Zhang, L. Zhang, and T. Goto, "Microstructure and Mechanical Properties of
$B_4C-HfB_2-SiC$ Ternary Eutectic Composites Prepared by Arc Melting," J. Eur. Ceram. Soc., 36 [3] 959-66 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.11.044 -
J. Zou, G.-J. Zhang, and Y.-M. Kan, "Pressureless Densification and Mechanical Properties of Hafnium Diboride Doped with
$B_4C$ : from Solid State Sintering to Liquid Phase Sintering," J. Eur. Ceram. Soc., 30 [12] 2699-705 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.04.033 -
L. Weng, X. Zhang, J. Han, W. Han, and C. Hong, "The Effect of
$B_4C$ on the Microstructure and Thermo-Mechanical Properties of$HfB_2$ -based Ceramics," J. Alloys Compd., 473 [1-2] 314-18 (2009). https://doi.org/10.1016/j.jallcom.2008.05.093 -
K. Sairam, J. K. Sonber, T. S. R. C. Murthy, C. Subramanian, R. C. Hubli, and A. K. Suri, "Development of
$B_4C-HfB_2$ Composites by Reaction Hot Pressing," Int. J. Refract. Met. Hard Mater., 35 32-40 (2012). https://doi.org/10.1016/j.ijrmhm.2012.03.004 -
H. Wang, S.-H. Lee, and L. Feng, "
$HfB_2-SiC$ Composite Prepared by Reactive Spark Plasma Sintering," Ceram. Int., 40 [7] 11009-13 (2014). https://doi.org/10.1016/j.ceramint.2014.03.107 -
C. Musa, R. Orru, D. Sciti, L. Silvestroni, and G. Cao, "Synthesis, Consolidation and Characterization of Monolithic and SiC Whiskers Reinforced
$HfB_2$ Ceramics," J. Eur. Ceram. Soc., 33 [3] 603-14 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.10.004 -
X. Zhang, L. Weng, J. Han, S. Meng, and W. Han," Preparation and Thermal Ablation Behavior of
$HfB_2-SiC$ -based Ultra-High-Temperature Ceramics under Severe Heat Conditions," Int. J. Appl. Ceram. Technol., 6 [2] 134-44 (2009). https://doi.org/10.1111/j.1744-7402.2008.02264.x - M. Gasch, D. Ellerby, E. Irby, S. Beckman, M. Gusman, and S. Johnson, "Processing, Properties and Arc Jet Oxidation of Hafnium Diboride/Silicon Carbide Ultra High Temperature Ceramics," J. Mater. Sci., 39 [19] 5925-37 (2004). https://doi.org/10.1023/B:JMSC.0000041689.90456.af
-
F. Monteverde, C. Melandri, and S. Guicciardi, "Microstructure and Mechanical Properties of an
$HfB_2$ +30 vol.% SiC Composite Consolidated by Spark Plasma Sintering," Mater. Chem. Phys., 100 [2-3] 513-19 (2006). https://doi.org/10.1016/j.matchemphys.2006.02.003 -
A. Larrea, G. F. de la Fuente, R. I. Merino, and V. M. Orera, "
$ZrO_2-Al_2O_3$ Eutectic Plates Produced by Laser Zone Melting," J. Eur. Ceram. Soc., 22 [2] 191-98 (2002). https://doi.org/10.1016/S0955-2219(01)00279-5 -
W.-T. Chen, C. H. Meredith, and E. C. Dickey, "Growth and Microstructure-Dependent Hardness of Directionally Solidified
$WC-W_2C$ Eutectoid Ceramics," J. Am. Ceram. Soc., 98 [7] 2191-96 (2015). https://doi.org/10.1111/jace.13561 -
S. S. Ordan'yan, D. D. Nesmelov, D. P. Danilovich, and Y. P. Udalov, "Revisiting the Structure of
$SiC-B_4C-MedB_2$ Systems and Prospects for the Development of Composite Ceramic Materials based on Them," Russ. J. Non. Ferr. Met., 58 [5] 545-51 (2017). https://doi.org/10.3103/S1067821217050133
Cited by
- Determining Compositional Variation in Silicon-Metal Alloys by Parsing SEM/EDS Hyperspectral Images vol.27, pp.3, 2021, https://doi.org/10.1017/s1431927621000416