DOI QR코드

DOI QR Code

Eutectic Ceramic Composites by Melt-Solidification

  • Goto, Takashi (State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology) ;
  • Tu, Rong (State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology)
  • Received : 2019.04.06
  • Accepted : 2019.06.04
  • Published : 2019.07.31

Abstract

While high-temperature ceramic composites consisting of carbides, borides, and nitrides, the so-called ultra-high-temperature ceramics (UHTCs), have been commonly produced through solid-state sintering, melt-solidification is an alternative method for their manufacture. As many UHTCs are binary or ternary eutectic systems, they can be melted and solidified at a relatively low temperature via a eutectic reaction. The microstructure of the eutectic composites is typically rod-like or lamellar, as determined by the volume fraction of the second phase. Directional solidification can help fabricate more sophisticated UHTCs with highly aligned textures. This review describes the fabrication of UHTCs through the eutectic reaction and explains their mechanical properties. The use of melt-solidification has been limited to small specimens; however, the recently developed laser technology can melt large-sized UHTCs, suggesting their potential for practical applications. An example of laser melt-solidification of a eutectic ceramic composite is demonstrated.

Keywords

References

  1. Z. A. Munir, D. V. Quach, and M. Ohyanagi, "Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process," J. Am. Ceram. Soc., 94 [1] 1-19 (2011). https://doi.org/10.1111/j.1551-2916.2010.04210.x
  2. Z. Hu, D. Zheng, R. Tu, M. Yang, Q. Li, M. Han, S. Zhang, L. Zhang, and T. Goto, "Structural Controlling of Highly-Oriented Polycrystal 3C-SiC Bulks via Halide CVD," Materials, 12 [3] 390-40 (2019). https://doi.org/10.3390/ma12030390
  3. W.-T. Chen, R. M. White, T. Goto, and E. C. Dickey, "Directionally Solidified Boride and Carbide Eutectic Ceramics," J. Am. Ceram. Soc., 99 [6] 1837-51 (2016). https://doi.org/10.1111/jace.14287
  4. A. R. West, Solid State Chemistry and its Applications; 2nd Eds, pp. 325-57, Wiley, 2014.
  5. W. Li, R. Tu, and T. Goto, "Preparation of Directionally Solidified $TiB_2-TiC$ Eutectic Composites by a Floating Zone Method," Mater. Lett., 60 [6] 839-43 (2006). https://doi.org/10.1016/j.matlet.2005.10.028
  6. W. Li, R. Tu, and T. Goto, "Preparation of Directionally Solidified $B_4C-TiB_2-SiC$ Ternary Eutectic Composites by a Floating Zone Method and Their Properties," Mater. Trans., 46 [9] 2067-72 (2005). https://doi.org/10.2320/matertrans.46.2067
  7. K. Nishimoto, Y. Yokota, S. Kurosawa, Y. Fujimoto, N. Kawaguchi, K. Fukuda, and A. Yoshikawa, "Crystal Growth of $LiF/LiYF_4$ Eutectic Crystals and Their Luminescent Properties," J. Eur. Ceram. Soc., 34 [9] 2117-21 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.02.029
  8. I. Gunjishima, T. Akashi, and T. Goto, "Characterization of Directionally Solidified $B_4C-TiB_2$ Composites Prepared by a Floating Zone Method," Mater. Trans., 43 [4] 712-20 (2002). https://doi.org/10.2320/matertrans.43.712
  9. I. Gunjishima, T. Akashi, and T. Goto, "Characterization of Directionally Solidified $B_4C-SiC$ Composites Prepared by a Floating Zone Method," Mater. Trans., 43 [9] 2309-15 (2002). https://doi.org/10.2320/matertrans.43.2309
  10. R. L. Ashbrook, "Directionally Solidified Ceramic Eutectics," J. Am. Ceram. Soc., 60 [9-10] 428-35 (1977). https://doi.org/10.1111/j.1151-2916.1977.tb15527.x
  11. J. D. Hunt, "Development in Eutectics," J. Cryst. Growth, 3-4 82-91 (1968). https://doi.org/10.1016/0022-0248(68)90103-6
  12. F. L. Kennard, R. C. Bradt, and V. S. Stubican; "Eutectic Solidification of MgO-TEX>$MgAl_2O_4$," J. Am. Ceram. Soc., 56 [11] 566-69 (1973). https://doi.org/10.1111/j.1151-2916.1973.tb12417.x
  13. E. O. Hall, "The Deformation and Aging of Mild Steel," Proc. Phys. Soc., London, Sect. B, 64 [9] 747-53 (1951). https://doi.org/10.1088/0370-1301/64/9/303
  14. N. J. Petch, "The Cleavage Strength of Polycrystals," J. Iron Steel Inst., 174 25-8 (1953).
  15. Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu, and Y. Kohtoku, "A Ductile Ceramic Eutectic Composite with High Strength at 1,873 K," Nature, 389 [4] 49-52 (1997). https://doi.org/10.1038/37937
  16. Y. Ohashi, N. Yasui, T. Suzuki, M. Watanabe, T. Den, K. Kamada, Y. Yokota, and A. Yoshikawa, "Orientation Relationships of Unidirectionally Aligned $GdAlO_3/Al_2O_3$ Eutectic Fibers," J. Eur. Ceram. Soc., 34 [15] 3849-57 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.04.042
  17. N. S. Jacobson, "Corrosion of Silicon-Based Ceramics in Combustion Environments," J. Am. Ceram. Soc., 76 [1] 3-28 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03684.x
  18. J. Hong, K. E. Spear, and V. S. Stubican, "Directional Solidification of $SiC-B_4C$ Eutectic: Growth and Some Properties," Mater. Res. Bull., 14 [6] 775-83 (1979). https://doi.org/10.1016/0025-5408(79)90137-5
  19. T. Goto, E. Ito, M. Mukaida, and T. Hirai, "Microstructure and Seebeck Coefficient of $SiC-B_4C$ Eutectic Ceramics," J. Jpn. Soc. Powder Powder Metall., 41 [11] 1304-7 (1994). https://doi.org/10.2497/jjspm.41.1304
  20. T. Narushima, T. Goto, Y. Iguchi, and T. Hirai, "High Temperature Active Oxidation of Chemically Vapor-Deposited Silicon Carbide in an $Ar-O_2$ Atmosphere," J. Am. Ceram. Soc., 74 [10] 2583-86 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06803.x
  21. I. Akin, M. Hotta, F. C. Sahin, O. Yucel, G. Gollor, and T. Goto, "Microstructure and Densification of $ZrB_2-SiC$ Composites Prepared by Spark Plasma Sintering," J. Eur. Ceram. Soc., 29 [11] 2379-85 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.01.011
  22. R. Tu, H. Hirayama, and T. Goto, "Preparation of $ZrB_2-SiC$ Composites by Arc Melting and Their Properties," J. Ceram. Soc. Jpn., 116 [3] 431-35 (2008). https://doi.org/10.2109/jcersj2.116.431
  23. W.-J. Li, R. Tu, and T. Goto, "Preparation of $TiC-TiB_2-SiC$ Ternary Eutectic Composites by Arc-Melting and Their Characterizations," Mater. Trans., 47 [4] 1193-97 (2006). https://doi.org/10.2320/matertrans.47.1193
  24. W.-J. Li, R. Tu, and T. Goto, "Preparation of $TiC-TiB_2-SiC$ Eutectic Composite by an Arc-Melted Method and its Characterization," Mater. Trans., 46 [11] 2504-8 (2005). https://doi.org/10.2320/matertrans.46.2504
  25. H. Endo, M. Ueki, and H. Kubo, "Hot Pressing of SiC-TiC Composite," J. Mater. Sci., 25 2503-6 (1990). https://doi.org/10.1007/BF00638050
  26. T. Goto and T. Hirai, "Microstructures of SiC-TiC in-situ Composites Prepared by Chemical Vapor Deposition," J. Jpn. Soc. Powder Powder Metall., 34 [9] 487-90 (1987). https://doi.org/10.2497/jjspm.34.487
  27. G. Osugi, A. Ito, M. Hotta, and T. Goto, "Microstructure and Hardness of SiC-TiC Nanocomposite Thin Films Prepared by Radiofrequency Magnetron Sputtering," Thin Solid Films, 520 [18] 5851-55 (2012). https://doi.org/10.1016/j.tsf.2012.05.021
  28. E. J. Cheng, H. Katsui, R. Tu, and T. Goto, "Rod-like Eutectic Structure of Arc-Melted TiB2-TiCxN1-x Composite," J. Eur. Ceram. Soc., 34 [9] 2089-94 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.12.036
  29. E. J. Cheng, H. Katsui, R. Tu, and T. Goto, "Long-Range Ordered Structure of Ti-B-C-N in a $TiB_2-TiC_xN_{1-x}$ Eutectic Composite," J. Am. Ceram. Soc., 97 [8] 2423-26 (2014). https://doi.org/10.1111/jace.13118
  30. E. J. Cheng, Y. Li, J. Sakamoto, S. Han, H. Sun, J. Noble, H. Katsui, and T. Goto, "Mechanical Properties of Individual Phases of $ZrB_2-ZrC$ Eutectic Composite Measured by Nanoindentation," J. Eur. Ceram. Soc., 37 [13] 4223-27 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.05.031
  31. E. J. Cheng, H. Katsui, and T. Goto, "Microstructure of $ZrB_2-ZrN$ Directionally Solidified Eutectic Composite by Arc-Melting," J. Asian Ceram. Soc., 6 [1] 102-7 (2018). https://doi.org/10.1080/21870764.2018.1446467
  32. E. J. Cheng, H. Katsui, and T. Goto, "$ZrB_2-ZrC_xN_{1-x} $ Eutectic Composites Produced by Melt Solidification," J. Am. Ceram. Soc., 99 [2] 667-73 (2016). https://doi.org/10.1111/jace.13984
  33. R. Tu, N. Li, Q. Li, S. Zhang, L. Zhang, and T. Goto, "Effect of Microstructure on Mechanical, Electrical and Thermal Properties of $B_4C-HfB_2$ Composites Prepared by Arc Melting," J. Eur. Ceram. Soc., 36 [16] 3929-37 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.06.049
  34. R. Tu, N. Li, Q. Li, S. Zhang, L. Zhang, and T. Goto, "Microstructure and Mechanical Properties of $B_4C-HfB_2-SiC$ Ternary Eutectic Composites Prepared by Arc Melting," J. Eur. Ceram. Soc., 36 [3] 959-66 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.11.044
  35. J. Zou, G.-J. Zhang, and Y.-M. Kan, "Pressureless Densification and Mechanical Properties of Hafnium Diboride Doped with $B_4C$: from Solid State Sintering to Liquid Phase Sintering," J. Eur. Ceram. Soc., 30 [12] 2699-705 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.04.033
  36. L. Weng, X. Zhang, J. Han, W. Han, and C. Hong, "The Effect of $B_4C$ on the Microstructure and Thermo-Mechanical Properties of $HfB_2$-based Ceramics," J. Alloys Compd., 473 [1-2] 314-18 (2009). https://doi.org/10.1016/j.jallcom.2008.05.093
  37. K. Sairam, J. K. Sonber, T. S. R. C. Murthy, C. Subramanian, R. C. Hubli, and A. K. Suri, "Development of $B_4C-HfB_2$ Composites by Reaction Hot Pressing," Int. J. Refract. Met. Hard Mater., 35 32-40 (2012). https://doi.org/10.1016/j.ijrmhm.2012.03.004
  38. H. Wang, S.-H. Lee, and L. Feng, "$HfB_2-SiC$ Composite Prepared by Reactive Spark Plasma Sintering," Ceram. Int., 40 [7] 11009-13 (2014). https://doi.org/10.1016/j.ceramint.2014.03.107
  39. C. Musa, R. Orru, D. Sciti, L. Silvestroni, and G. Cao, "Synthesis, Consolidation and Characterization of Monolithic and SiC Whiskers Reinforced $HfB_2$ Ceramics," J. Eur. Ceram. Soc., 33 [3] 603-14 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.10.004
  40. X. Zhang, L. Weng, J. Han, S. Meng, and W. Han," Preparation and Thermal Ablation Behavior of $HfB_2-SiC$-based Ultra-High-Temperature Ceramics under Severe Heat Conditions," Int. J. Appl. Ceram. Technol., 6 [2] 134-44 (2009). https://doi.org/10.1111/j.1744-7402.2008.02264.x
  41. M. Gasch, D. Ellerby, E. Irby, S. Beckman, M. Gusman, and S. Johnson, "Processing, Properties and Arc Jet Oxidation of Hafnium Diboride/Silicon Carbide Ultra High Temperature Ceramics," J. Mater. Sci., 39 [19] 5925-37 (2004). https://doi.org/10.1023/B:JMSC.0000041689.90456.af
  42. F. Monteverde, C. Melandri, and S. Guicciardi, "Microstructure and Mechanical Properties of an $HfB_2$+30 vol.% SiC Composite Consolidated by Spark Plasma Sintering," Mater. Chem. Phys., 100 [2-3] 513-19 (2006). https://doi.org/10.1016/j.matchemphys.2006.02.003
  43. A. Larrea, G. F. de la Fuente, R. I. Merino, and V. M. Orera, "$ZrO_2-Al_2O_3$ Eutectic Plates Produced by Laser Zone Melting," J. Eur. Ceram. Soc., 22 [2] 191-98 (2002). https://doi.org/10.1016/S0955-2219(01)00279-5
  44. W.-T. Chen, C. H. Meredith, and E. C. Dickey, "Growth and Microstructure-Dependent Hardness of Directionally Solidified $WC-W_2C$ Eutectoid Ceramics," J. Am. Ceram. Soc., 98 [7] 2191-96 (2015). https://doi.org/10.1111/jace.13561
  45. S. S. Ordan'yan, D. D. Nesmelov, D. P. Danilovich, and Y. P. Udalov, "Revisiting the Structure of $SiC-B_4C-MedB_2$ Systems and Prospects for the Development of Composite Ceramic Materials based on Them," Russ. J. Non. Ferr. Met., 58 [5] 545-51 (2017). https://doi.org/10.3103/S1067821217050133

Cited by

  1. Determining Compositional Variation in Silicon-Metal Alloys by Parsing SEM/EDS Hyperspectral Images vol.27, pp.3, 2021, https://doi.org/10.1017/s1431927621000416