참고문헌
- R. P. Luo, W. Q. Lyu, and K. C. Wen, "Overview of Graphene as Anode in Lithium-Ion Batteries," J. Electron. Sci. Technol., 16 [1] 57-68 (2018).
- J. B. Goodenough and K. S. Park, "The Li-Ion Rechargeable Battery: A Perspective," J. Am. Chem. Soc., 135 [4] 1167-76 (2013). https://doi.org/10.1021/ja3091438
- J. B. Bates, N. J. Dudney, and B. J. Neudecker, "Thin-Film Lithium and Lithium-Ion Batteries," Solid State Ionics, 135 33-45 (2000). https://doi.org/10.1016/S0167-2738(00)00327-1
- J. M. Tarascon and M. Armand, "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414 359-67 (2001). https://doi.org/10.1038/35104644
- C. Sun, J. Liu, and Y. Gong, "Recent Advances in All-Solid-State Rechargeable Lithium Batteries," Nano Energy, 33 363-86 (2017). https://doi.org/10.1016/j.nanoen.2017.01.028
- C. Cao, Z. Li, and X. L. Wang, "Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries," Front. Energy Res., 2 25 (2014).
- F. Croce, G. B. Appetecchi, L. Persi, and B. Scrosati, "Nanocomposite Polymer Electrolytes for Lithium Batteries," Nature, 394 456-58 (1998). https://doi.org/10.1038/28818
-
H. Aono, N. Imanaka, and G. Y. Adachi, "High
$Li^+$ Conducting Ceramics," Acc. Chem. Res., 27 [9] 265-70 (1994). https://doi.org/10.1021/ar00045a002 - P. Knauth, "Inorganic Solid Li Ion Conductors: An Overview," Solid State Ionics, 180 [14-16] 911-16 (2009). https://doi.org/10.1016/j.ssi.2009.03.022
-
K. Arbi, M. G. Lazarraga, D. B. H. Chehimi, M. Ayadi-Trabelsi, J. M. Rojo, and J. Sanz, "Lithium Mobility in
$Li_{1.2}Ti_{1.8}R_{0.2}(PO_4)_3$ Compounds (R = Al, Ga, Sc, In) as Followed by NMR and Impedance Spectroscopy," Chem. Mater., 16 [2] 255-62 (2004). https://doi.org/10.1021/cm030422i - O. I. V'yunov, O. N. Gavrilenko, and L. L. Kovalenko, "Intercalation Processes Influence the Structure and Electrophysical Properties of Lithium-Conducting Compounds Having Defect Perovskite Structure," Russ. J. Inorg. Chem., 56 [1] 93-8 (2011). https://doi.org/10.1134/S0036023611010232
- Y. Inaguma and M. Nakashkima, "A Rechargeable Lithium-Air Battery Using a Lithium Ion - Conducting Lanthanum Lithium Titanate Ceramics as an Electrolyte Separator," J. Power Sources, 228 250-55 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.098
- A. Mei, X. L. Wang, and J. L. Lan, "Role of Amorphous Boundary Layer in Enhancing Ionic Conductivity of Lithium-Lanthanum Titanate Electrolyte," Electrochim. Acta, 55 [8] 2958-63 (2010). https://doi.org/10.1016/j.electacta.2010.01.036
-
X. Guo, P. S. Maram, and A. Navrotsky, "A Correlation between Formation Enthalpy and Ionic Conductivity in Perovskite-Structured
$Li_{3x}La_{0.67−x}TiO_3$ Solid Lithium Ion Conductors," J. Mater. Chem. A, 5 [25] 12951- 57 (2017). https://doi.org/10.1039/C7TA02434G -
R. Qin, Y. Wei, and T. Zhai, "LISICON Structured
$Li_3V_2(PO_4)_3$ with High Rate and Ultralong Life for Low-Temperature Lithium-Ion Batteries," J. Mater. Chem. A, 6 [20] 9737-46 (2018). https://doi.org/10.1039/C8TA01124A - V. Thangadurai and W. Weppner, "Recent Progress in Solid Oxide and Lithium Ion Conducting Electrolytes Research," Ionics, 12 [1] 81-92 (2006). https://doi.org/10.1007/s11581-006-0013-7
- Y. Su, J. Falgenhauer, and A. Polity, "LiPON Thin Films with High Nitrogen Content for Application in Lithium Batteries and Electrochromic Devices Prepared by RF Magnetron Sputtering," Solid State Ionics, 282 63-9 (2015). https://doi.org/10.1016/j.ssi.2015.09.022
- J. Jurgen and W. G. Zeier, "A Solid Future for Battery Development," Nat. Energy, 1 [9] 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
- Y. Kato, S. Hori, and T. Saito, "High-Power All-Solid-State Batteries Using Sulfide Superionic Conductors," Nat. Energy, 1 16030 (2016). https://doi.org/10.1038/nenergy.2016.30
-
J. Saienga and S. W. Martin, "The Comparative Structure, Properties, and Ionic Conductivity of
$LiI^+$ $Li_2S^+$ $GeS_2$ Glasses Doped with$Ga_2S_3$ and$La_2S_3$ ," J. Non-Cryst. Solids, 354 [14] 1475-86 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.08.058 -
P. Zhao, Y. Wen, and J. Cheng, "A Novel Method for Preparation of High Dense Tetragonal
$Li_7La_3Zr_2O_{12}$ ," J. Power Sources, 344 56-61 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.088 -
R. Murugan, V. Thangadurai, and W. Weppner, "Fast Lithium Ion Conduction in Garnet-Type
$Li_7La_3Zr_2O_{12}$ ," Angew. Chem., Int. Ed., 46 [41] 7778-81 (2007). https://doi.org/10.1002/anie.200701144 - X. Han, Y. Gong, and K. Fu, "Negating Interracial Impedance in Garnet-Based Solid-State Li Metal Batteries," Nat. Mater., 16 [5] 572-79 (2016). https://doi.org/10.1038/nmat4821
- M. Abreu-Sepulveda, "Synthesis and Characterization of Substituted Garnet and Perovskite-Based Lithium-Ion Conducting Solid Electrolytes," Ionics, 22 [3] 317-25 (2016). https://doi.org/10.1007/s11581-015-1556-2
-
C. Deviannapoorani, L. S. Shankar, and S. Ramakumar, "Investigation on Lithium Ion Conductivity and Structural Stability of Yttrium-Substituted
$Li_7La_3Zr_2O_{12}$ ," Ionics, 22 [8] 1281-89 (2016). https://doi.org/10.1007/s11581-016-1674-5 -
Y. Li, "W-Doped
$Li_7La_3Zr_2O_{12}$ Ceramic Electrolytes for Solid State Li-Ion Batteries," Electrochim. Acta, 180 [1] 37-42 (2015). https://doi.org/10.1016/j.electacta.2015.08.046 - J. Li, Y. Jiang, and H. Zhou, "Effects of Sintering Aids Al2O3 and Y2O3 on the Lithium Ion Conductivity of Solid Lithium Ion Electrolyte LLZO," Mater. Sci. Eng. Powder Metal., 23 [2] 199-205 (2018).
-
S. Yu and D. J. Siegel, "Grain Boundary Contributions to Li-ion Transport in the Solid Electrolyte
$Li_7La_3Zr_2O_{12}$ (LLZO)," Chem. Mater., 29 [22] 9639-47 (2018). https://doi.org/10.1021/acs.chemmater.7b02805 -
V. Thangadurai, H. Kaack, and W. J. F. Weppner, "Novel Fast Lithium Ion Conduction in Garnet-Type
$Li_5La_3M_2O_{12}$ (M = Nb, Ta)," J. Am. Ceram. Soc., 86 [3] 437-40 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03318.x -
R. Murugan, V. Thangadurai, and W. Weppner, "Fast Lithium Ion Conduction in Garnet-Type
$Li_7La_3Zr_2O_{12}$ ," Angew. Chem., Int. Ed., 46 [41] 7778-81 (2007). https://doi.org/10.1002/anie.200701144 -
J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, and J. Akimoto, "Crystal Structure of Fast Lithium-Ion-Conducting Cubic
$Li_7La_3Zr_2O_{12}$ ," Chem. Lett., 40 [1] 60-2 (2011). https://doi.org/10.1246/cl.2011.60 -
M. P. O'Callaghan and E. J. Cussen, "The Structure of the Lithium-Rich Garnets
$Li_6SrLa_2M_2O_{12}$ and$Li_{6.4}Sr_{1.4}La_{1.6}M_2O_{12}$ (M = Sb, Ta)," Solid State Sci., 10 [4] 390-95 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.11.036 -
J. Awaka, N. Kijima, H. Hayakawa, and J. Akimoto, "Synthesis and Structure Analysis of Tetragonal
$Li_7La_3Zr_2O_{12}$ with the Garnet-Related Type Structure," J. Solid State Chem., 182 [8] 2046-52 (2009). https://doi.org/10.1016/j.jssc.2009.05.020 -
J. Percival, E. Kendrick, R. I. Smith, and P. R. Slater, "Cation Ordering in Li Containing Garnets: Synthesis and Structural Characterisation of the Tetragonal System,
$Li_7La_3Sn_2O_{12}$ ," Dalton Transactions, [26] 5177-81 (2009). https://doi.org/10.1039/b907331k -
J. Awaka, N. Kijima, K. Kataoka, H. Hayakawa, K. Ohshima, and J. Akimoto, "Neutron Powder Diffraction Study of Tetragonal
$Li_7La_3Hf_2O_{12}$ with the Garnet-Related Type Structure," J. Solid State Chem., 183 [1] 180-85 (2010). https://doi.org/10.1016/j.jssc.2009.10.030 -
M. Matsui, K. Sakamoto, K. Takahashi, A. Hirano, Y. Takeda, O. Yamamoto, and N. Imanishi, "Phase Transformation of the Garnet Structured Lithium Ion Conductor:
$Li_7La_3Zr_2O_{12}$ ," Solid State Ionics, 262 155-59 (2014). https://doi.org/10.1016/j.ssi.2013.09.027 -
N. Bernstein, M. D. Johannes, and K. Hoang, "Origin of the Structural Phase Transition in
$Li_7La_3Zr_2O_{12}$ ," Phys. Rev. Lett., 109 [20] 1-5 (2012). -
M. Klenk and W. Lai, "Local Structure and Dynamics of Lithium Garnet Ionic Conductors: Tetragonal and Cubic
$Li_7La_3Zr_2O_{12}$ ," Phys. Chem. Chem. Phys., 17 [14] 8758-68 (2015). https://doi.org/10.1039/c4cp05690f -
M. J. Klenk and W. Lai, "Finite-Size Effects on the Molecular Dynamics Simulation of Fast-Ion Conductors: A Case Study of Lithium Garnet Oxide
$Li_7La_3Zr_2O_{12}$ ," Solid State Ionics, 289 143-49 (2016). https://doi.org/10.1016/j.ssi.2016.03.002 -
S. Adams and R. P. Rao, "Ion Transport and Phase Transition in
$Li_{7−x}La_3(Zr_{2−x}M_x)O_{12}$ (M =$Ta^{5+}$ ,$Nb^{5+}$ , x = 0, 0.25)," J. Mater. Chem., 22 [4] 1426-34 (2012). https://doi.org/10.1039/c1jm14588f - F. Chen, J. Li, Z. Huang, Y. Yang, Q. Shen, and L. Zhang, "Origin of the Phase Transition in Lithium Garnets," J. Phys. Chem. C, 122 [4] 1963-72 (2018). https://doi.org/10.1021/acs.jpcc.7b10911
- K. Meier, T. Laino, and A. Curioni, "Solid-State Electrolytes: Revealing the Mechanisms of Li-Ion Conduction in Tetragonal and Cubic LLZO by First-Principles Calculations," J. Phys. Chem. C, 118 [13] 6668-79 (2014). https://doi.org/10.1021/jp5002463
-
R. Jalem, Y. Yamamoto, H. Shiiba, M. Nakayama, H. Munakata, T. Kasuga, and K. Kanamura, "Concerted Migration Mechanism in the Li Ion Dynamics of Garnet- Type
$Li_7La_3Zr_2O_{12}$ ," Chem. Mater., 25 [3] 425-30 (2013). https://doi.org/10.1021/cm303542x -
C. Chen, Z. Lu, and F. Ciucci, "Data Mining of Molecular Dynamics Data Reveals Li Diffusion Characteristics in Garnet
$Li_7La_3Zr_2O_{12}$ ," Sci. Rep., 7 40769 (2017). https://doi.org/10.1038/srep40769 -
Y. Zhang, F. Chen, and T. Rong, "Field Assisted Sintering of Dense Al-Substituted Cubic Phase
$Li_7La_3Zr_2O_{12}$ Solid Electrolytes," J. Power Sources, 268 [3] 960-64 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.148 -
M. Botros, R. Djenadic, and O. Clemens, "Field Assisted Sintering of Fine-Grained
$Li_{7-3x}La_3Zr_2Al_xO_{12}$ Solid Electrolyte and the Influence of the Microstructure on the Electrochemical Performance," J. Power Sources, 309 108-15 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.086 -
Y. Zhang, F. Chen, and R. Tu, "Effect of Lithium Ion Concentration on the Microstructure Evolution and its Association with the Ionic Conductivity of Cubic Garnet- Type Nominal
$Li_7Al_{0.25}La_3Zr_2O_{12}$ Solid Electrolytes," Solid State Ionic, 284 53-60 (2015). https://doi.org/10.1016/j.ssi.2015.11.014 -
Y. Zhang, J. Cai, and F. Chen, "Preparation of Cubic
$Li_{7}- La_{3}Zr_{2}O_{12}$ Solid Electrolyte Using a Nano-Sized Core-Shell Structured Precursor," J. Alloys Compd., 644 793-98 (2015). https://doi.org/10.1016/j.jallcom.2015.05.085 -
C. Shao, H. Liu, and Z. Yu, "Structure and Ionic Conductivity of Cubic
$Li_7La_3Zr_2O_{12}$ Solid Electrolyte Prepared by Chemical Co-Precipitation Method," Solid State Ionics, 287 13-6 (2016). https://doi.org/10.1016/j.ssi.2016.01.042 -
T. Yang, Z. D. Gordon, and Y. Li, "Nanostructured Garnet-Type Solid Electrolytes for Lithium Batteries: Electrospinning Synthesis of
$Li_7La_3Zr_2O_{12}$ Nanowires and Particle Size-Dependent Phase Transformation," J. Phys. Chem. C, 119 [27] 14947-53 (2015). https://doi.org/10.1021/acs.jpcc.5b03589 -
R. Djenadic, M. Botros, and C. Benel, "Nebulized Spray Pyrolysis of Al-Doped
$Li_7La_3Zr_2O_{12}$ Solid Electrolyte for Battery Applications," Solid State Ionics, 263 [10] 49-56 (2014). https://doi.org/10.1016/j.ssi.2014.05.007 -
E. Rangasamy, J. Wolfenstine, and J. Sakamoto, "The Role of Al and Li Concentration on the Formation of Cubic Garnet Solid Electrolyte of Nominal Composition
$Li_{7-}La_3Zr_2O_{12}$ ," Solid State Ionics, 206 28-32 (2012). https://doi.org/10.1016/j.ssi.2011.10.022 -
K. Liu, J. T. Ma, and C. A. Wang, "Excess Lithium Salt Functions More than Compensating for Lithium Loss when Synthesizing
$Li_{6.5}La_3Ta_{0.5}Zr_{1.5}O_{12}$ in Alumina Crucible," J. Power Sources, 260 109-14 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.065 -
J. L. Allen, J. Wolfenstine, and E. Rangasamy, "Effect of Substitution (Ta, Al, Ga) on the Conductivity of
$Li_{7-}La_3Zr_2O_{12}$ ," J. Power Sources, 206 [1] 315-19 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.131 -
J. M. Lee, T. Kim, and S. W. Baek, "High Lithium Ion Conductivity of
$Li_7La_3Zr_2O_{12}$ Synthesized by Solid State Reaction," Solid State Ionics, 258 [5] 13-7 (2014). https://doi.org/10.1016/j.ssi.2014.01.043 -
Y. Li, J. T. Han, and C. Wang, "Optimizing
$Li^+$ Conductivity in a Garnet Framework," J. Mater. Chem., 22 [30] 15357-61 (2012). https://doi.org/10.1039/c2jm31413d -
J. Gai, E. Zhao, "Improving the Li-Ion Conductivity and Air Stability of Cubic
$Li_7La_3Zr_2O_{12}$ by the Co-Doping of Nb, Y," J. Eur. Ceram. Soc., 38 [4] 1673-78 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.002 -
J. F. Wu, E. Y. Chen, and Y. Yu, "Gallium-Doped
$Li_7La_3Zr_2O_{12}$ Garnet-Type Electrolytes with High Lithium-Ion Conductivity," ACS Appl. Mater. Interfaces, 9 [2] 1542-52 (2017). https://doi.org/10.1021/acsami.6b13902 - Y. Q. Li, Z. Wang, and C. L. Li, "Densification and Ionic-Conduction Improvement of Lithium Garnet Solid Electrolytes by Flowing Oxygen Sintering," J. Power Sources, 248 642-46 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.140
-
S. Ohta, T. Kobayashi, and T. Asaoka, "High Lithium Ionic Conductivity in the Garnet-Type Oxide
$Li_{7-X}La_3(Zr_{2-X}Nb_X)O_{12}$ (X=0-2)," J. Power Sources, 196 [6] 3342-45 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.089 -
R. Murugan, S. Ramakumar, and N. Janani, "High Conductive Yttrium Doped
$Li_7La_3Zr_2O_{12}$ Cubic Lithium Garnet," Electrochem. Commun., 13 [12] 1373-75 (2011). https://doi.org/10.1016/j.elecom.2011.08.014 -
L. Dhivya, N. Janani, B. Palanivel, and R. Murugan, "
$Li^+$ Transport Properties of W Substituted$Li_7La_3Zr_2O_{12}$ Cubic Lithium Garnets," AIP. Adv., 3 [8] 82115-21 (2013). https://doi.org/10.1063/1.4818971 -
S. Ramakumar, L. Satyanarayana, S. V. Manorama, and R. Murugan, "Structure and
$Li^+$ Dynamics of Sb-Doped$Li_7La_3Zr_2O_{12}$ Fast Lithium Ion Conductors," Phys. Chem. Chem. Phys., 15 [27] 11327-38 (2013). https://doi.org/10.1039/c3cp50991e -
C. Deviannapoorani, L. Dhivya, and S. Ramakumar, "Lithium Ion Transport Properties of High Conductive Tellurium Substituted
$Li_7La_3Zr_2O_{12}$ Cubic Lithium Garnets," J. Power Sources, 240 18-25 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.166 -
C. Deviannapoorani, S. Ramakumar, and N. Janani, "Synthesis of Lithium Garnets from
$La_2Zr_2O_7$ Pyrochlore," Solid State Ionics, 283 123-30 (2015). https://doi.org/10.1016/j.ssi.2015.10.006 -
D. Wang, G. Zhong, and W. K. Pang, "Toward Understanding the Lithium Transport Mechanism in Garnettype Solid Electrolytes:
$Li^+$ Ion Exchanges and Their Mobility at Octahedral/Tetrahedral Sites," Chem. Mater., 27 [19] 6650-59 (2015). https://doi.org/10.1021/acs.chemmater.5b02429 -
D. Rettenwander, R. Wagner, and A. Reyer, "Interface Instability of Fe-Stabilized
$Li_7La_3Zr_2O_{12}$ versus Li Metal," J. Phys. Chem. C, 122 [7] 3780−85 (2018). https://doi.org/10.1021/acs.jpcc.7b12387 -
A. R. Yoo, S. A. Yoon, and Y. S. Kim, "Comparative Study on the Synthesis of Al-Doped
$Li_{6.2}La_3Zr_2O_{12}$ Powder as a Solid Electrolyte Using Sol-Gel Synthesis and Solid-State Processing," J. Nanosci. Nanotechnol., 16 [11] 11662-68 (2016). https://doi.org/10.1166/jnn.2016.13570 -
H. Xie, Y. Li, and J. B. Goodenough, "Low-Temperature Synthesis of
$Li_7La_3Zr_2O_{12}$ with Cubic Garnet-Type Structure," Mater. Res. Bull., 47 [5] 1229-32 (2012). https://doi.org/10.1016/j.materresbull.2012.01.027 -
I. Kokal, M. Somer, and P. H. L. Notten, "Sol-Gel Synthesis and Lithium Ion Conductivity of
$Li_7La_3Zr_2O_{12}$ with Garnet-Related Type Structure," Solid State Ionic, 185 [1] 42-46 (2011). https://doi.org/10.1016/j.ssi.2011.01.002 -
J. Sakamoto, E. Rangasamy, and H. Kim, "Synthesis of Nano-Scale Fast Ion Conducting Cubic
$Li_7La_3Zr_2O_{12}$ ," Nanotechnology, 24 [42] 424005 (2013). https://doi.org/10.1088/0957-4484/24/42/424005 -
Y. Shimonishi, A. Toda, and Z. Tao, "Synthesis of Garnet- Type
$Li_{7−x}La_3Zr_2O_{12−1/2x}$ and its Stability in Aqueous Solutions," Solid State Ionics, 183 [1] 48-53 (2011). https://doi.org/10.1016/j.ssi.2010.12.010 -
Y. Jin and P. J. Mcginn. "Al-Doped
$Li_7La_3Zr_2O_{12}$ Synthesized by a Polymerized Complex Method," J. Power Sources, 196 [20] 8683-87 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.065 -
Y. Li, J. T. Han, and C. A. Wang, "Ionic Distribution and Conductivity in Lithium Garnet
$Li_7La_3Zr_2O_{12}$ ," J. Power Sources, 209 [4] 278-81 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.100 -
A. A. Raskovalov, E. A. Il'Ina, and B. D. Antonov, "Structure and Transport Properties of
$Li_7La_3Zr_{2-0.75x}Al_xO_{12}$ Superionic Solid Electrolytes," J. Power Sources, 238 48-52 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.049 -
R. Takano, K. Tadanaga, and A. Hayashi, "Low Temperature Synthesis of Al-Doped
$Li_7La_3Zr_2O_{12}$ Solid Electrolyte by a Sol-Gel Process," Solid State Ionics, 255 [2] 104-7 (2014). https://doi.org/10.1016/j.ssi.2013.12.006 -
N. Rosenkiewitz, J. Schuhmacher, and M. Bockmeyer, "Nitrogen-Free Sol-Gel Synthesis of Al-Substituted Cubic Garnet
$Li_7La_3Zr_2O_{12}$ (LLZO)," J. Power Sources, 278 104-8 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.066 - C. H. Lee, G. J. Park, and J. H. Choi, "Low Temperature Synthesis of Garnet Type Solid Electrolyte by Modified Polymer Complex Process and its Characterization," Mater. Res. Bull., 83 309-15 (2016). https://doi.org/10.1016/j.materresbull.2016.02.040
-
T. Takeuchi, H. Kageyama, and K. Nakanishi, "All-Solid-State Lithium Secondary Battery with
$Li_2S-C$ Composite Positive Electrode Prepared by Spark," J. Electrochem. Soc., 157 [11] A1196 (2010). https://doi.org/10.1149/1.3486083 -
R. Djenadic, M. Botros, and C. Benel, "Nebulized Spray Pyrolysis of Al-Doped
$Li_7La_3Zr_2O_{12}$ Solid Electrolyte for Battery Applications," Solid State Ionics, 263 49-56 (2014). https://doi.org/10.1016/j.ssi.2014.05.007 -
X. P. Wang, Y. Xia, J. Hu, Y. P. Xia, Z. Zhuang, L. J. Guo, H. Lu, T. Zhang, and Q. F. Fang, "Phase Transition and Conductivity Improvement of Tetragonal Fast Lithium Ionic Electrolyte
$Li_7La_3Zr_2O_{12}$ ," Solid State Ionics, 253 [12] 137-42 (2013). https://doi.org/10.1016/j.ssi.2013.09.029 -
J. Wolfenstine, J. Ratchford, and E. Rangasamy, "Synthesis and High Li-Ion Conductivity of Ga-Stabilized Cubic
$Li_7La_3Zr_2O_{12}$ ," Mater. Chem. Phys., 134 [2-3] 571-75 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.054 -
Y. Zhang, F. Chen, and J. Li, "Regulation Mechanism of Bottleneck Size on
$Li^+$ , Migration Activation Energy in Garnet-Type$Li_7La_3Zr_2O_{12}$ ," Electrochim. Acta, 261 137-42 (2018). https://doi.org/10.1016/j.electacta.2017.12.133 -
E. Rangasamy, J. Wolfenstine, and J. Sakamoto, "The Role of Al and Li Concentration on the Formation of Cubic Garnet Solid Electrolyte of Nominal Composition
$Li_{7}-La_3Zr_2O_{12}$ ," Solid State Ionics, 206 [1] 28-32 (2012). https://doi.org/10.1016/j.ssi.2011.10.022 -
J. Wolfenstine, J. Sakamoto, and J. L. Allen, "Electron Microscopy Characterization of Hot-Pressed Al Substituted
$Li_7La_3Zr_2O_{12}$ ," J. Mater. Sci., 47 [10] 4428-31 (2012). https://doi.org/10.1007/s10853-012-6300-y -
A. Düvel and A. Kuhn, "Mechanosynthesis of Solid Electrolytes: Preparation, Characterization, and Li Ion Transport Properties of Garnet-Type Al-Doped
$Li_7La_3Zr_2O_{12}$ Crystallizing with Cubic Symmetry," J. Phys. Chem. C, 116 [29] 15192-202 (2012). https://doi.org/10.1021/jp301193r -
N. Bernstein, M. D. Johannes, K. Hoang, "Origin of the Structural Phase Transition in
$Li_7La_3Zr_2O_{12}$ ," Phys. Rev. Lett., 109 [20] 205702 (2012). https://doi.org/10.1103/physrevlett.109.205702 -
Y. Jin and P. J. Mcginn, "Al-doped
$Li_7La_3Zr_2O_{12}$ Synthesized by a Polymerized Complex Method," J. Power Sources, 196 [20] 8683-87 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.065 -
J. Wolfenstine, J. Ratchford, and E. Rangasamy, "Synthesis and High Li-Ion Conductivity of Ga-Stabilized Cubic
$Li_7La_3Zr_2O_{12}$ ," Mater. Chem. Phys., 134 [2-3] 571-75 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.054 -
J. F. Wu, E. Y. Chen, and Y. Yu, "Gallium-Doped
$Li_7La_3Zr_2O_{12}$ Garnet-Type Electrolytes with High Lithium-Ion Conductivity," ACS Appl. Mater. Interface, 9 [2] 1542-52 (2017). https://doi.org/10.1021/acsami.6b13902 -
D. Rettenwander, C. A. Geiger, and G. Amthauer, "Synthesis and Crystal Chemistry of the Fast Li-Ion Conductor
$Li_7La_3Zr_2O_{12}$ Doped with Fe," Inorg. Chem., 52 [14] 8005-9 (2013). https://doi.org/10.1021/ic400589u -
D. Rettenwander, C. A. Geiger, and M. Tribus, "The Solubility and Site Preference of
$Fe^{3+}$ in$Li_{7−3x}Fe_xLa_3Zr_2O_{12}$ Garnets," J. Solid State Chem., 119 266-71 (2015). -
D. Rettenwander, "Interface Instability of Fe-Stabilized
$Li_7La_3Zr_2O_{12}$ versus Li Metal," J. Phys. Chem. C, 122 [7] 3780-85 (2018). https://doi.org/10.1021/acs.jpcc.7b12387 -
M. Huang, A. Dumon, and C. W. Nan, "Effect of Si, In and Ge Doping on High Ionic Conductivity of
$Li_7La_3Zr_2O_{12}$ ," Electrochem. Commun., 21 62-4 (2012). https://doi.org/10.1016/j.elecom.2012.04.032 -
Y.-T. Chen, A. Jena, W. K. Pang, V. K. Peterson, H.-S. Sheu, H. Chang, and R.-S. Liu, "Voltammetric Enhancement of Li-Ion Conduction in Al-Doped
$Li_{7-x}La_3Zr_2O_{12}$ Solid Electrolyte," J. Phys. Chem. C, 121 [29] 15565-73 (2017). https://doi.org/10.1021/acs.jpcc.7b04004 -
H. Elshinawi, G. W. Paterson, and D. A. Maclaren, "Low-Temperature Densification of Al-Doped
$Li_7La_3Zr_2O_{12}$ : A Reliable and Controllable Synthesis of Fast-Ion Conducting Garnets," J. Mater. Chem. A, 5 [1] 319-29 (2016). https://doi.org/10.1039/C6TA06961D -
E. J. Cheng, A. Sharafi, and J. Sakamoto, "Intergranular Li Metal Propagation through Polycrystalline
$Li_{6.25}Al_{0.25}La_3Zr_2O_{12}$ Ceramic Electrolyte," Electrochim. Acta, 223 85-91 (2017). https://doi.org/10.1016/j.electacta.2016.12.018 - L. Zhang, X. Zhan, and Y. T. Cheng, "Charge Transport in Electronic-Ionic Composites," J. Phys. Chem. Lett., 8 [21] 5385-89 (2017). https://doi.org/10.1021/acs.jpclett.7b02267
- S. Kobi and A. Mukhopadhyay, "Structural (in)Stability and Spontaneous Cracking of Li-La-Zirconate Cubic Garnet upon Exposure to Ambient Atmosphere," J. Eur. Ceram. Soc., 38 [14] 4707-18 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.06.014
-
R. Kun, F. Langer, and M. D. Piane, "Structural and Computational Assessment of the Influence of Wet-Chemical Post-Processing of the Al-Substituted Cubic
$Li_{7-}La_3Zr_2O_{12}$ ," ACS Appl. Mater. Interface, 10 [43] 37188-97 (2018). https://doi.org/10.1021/acsami.8b09789 -
C. Im, D. Park, H. Kim, and J. Lee, "Al-Incorporation into
$Li_7La_3Zr_2O_{12}$ Solid Electrolyte Keeping Stabilized Cubic Phase for All-Solid-State Li Batteries," J. Energy Chem., 27 [5] 1501-8 (2018). https://doi.org/10.1016/j.jechem.2017.10.006 -
X. J. Lu and D. Y. Yang, "Preparation of Garnet-Type
$Li_{7-3x}Al_xLa_3Zr_2O_{12}$ at Lower Temperature by Using Powders of Mixed Pre-treatment Conditions," J. Inorg. Organomet. Polym. Mater., 28 [5] 2023-27 (2018). https://doi.org/10.1007/s10904-018-0859-y -
J. F. Nonemacher, C. Hüter, and H. Zheng, "Microstructure and Properties Investigation of Garnet Structured
$Li_7La_3Zr_2O_{12}$ as Electrolyte for All-Solid-State Batteries," Solid State Ionics, 321 126-34 (2018). https://doi.org/10.1016/j.ssi.2018.04.016 -
J. K. Padarti, T. T. Jupalli, and C. Hirayama, "Low- Temperature Processing of Garnet-Type Ion Conductive Cubic
$Li_7La_3Zr_2O_{12}$ , Powders for High Performance All Solid-Type Li-Ion Batteries," J. Taiwan Inst. Chem. Eng., 90 85-91 (2018). https://doi.org/10.1016/j.jtice.2018.02.021 -
W. J. Xue, Y. P. Yang, and Q. L. Yang, "The Effect of Sintering Process on Lithium Ionic Conductivity of
$Li_{6.4}Al_{0.2}La_3Zr_2O_{12}$ Garnet Produced by Solid-State Synthesis," RSC Adv., 8 [24] 13083-88 (2018). https://doi.org/10.1039/C8RA01329B -
X. X. Pan, J. X. Wang, X. H. Chang, Y. D. Li, and W. B. Guan, "A Novel Solid-Liquid Route for Synthesizing Cubic Garnet Al-Substituted
$Li_7La_3Zr_2O_{12}$ ," Solid State Ionics, 317 1-6 (2018). https://doi.org/10.1016/j.ssi.2017.12.034 - M. Wang and J. Sakamoto, "Correlating the Interface Resistance and Surface Adhesion of the Li Metal-Solid Electrolyte Interface," J. Power Sources, 377 7-11 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.078
-
P. C. Zhao, G. P. Cao, and Z. Q. Jin, "Self-Consolidation Mechanism and its Application in the Preparation of Al-Doped Cubic
$Li_7La_3Zr_2O_{12}$ ," Mater. Design, 139 65-71 (2018). https://doi.org/10.1016/j.matdes.2017.10.067 - L. C. Bernuy, W. J. Manalastas, and L. D. A. J. Miguel, "ChemInform Abstract: Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics," Chem. Mater., 26 [12] 3610-17 (2014). https://doi.org/10.1021/cm5008069
-
J. Wolfenstine, J. Ratchford, and E. Rangasamy, "Synthesis and High Li-Ion Conductivity of Ga-Stabilized Cubic
$Li_7La_3Zr_2O_{12}$ ," Mater. Chem. Phys., 134 [2-3] 571-75 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.054 -
R. Wagner and D. Rettenwander, "Crystal Structure of Garnet-Related Li-Ion Conductor
$Li_{7−3x}Ga_xLa_3Zr_2O_{12}$ : Fast Li-Ion Conduction Caused by a Different Cubic Modification?," Chem. Mater., 28 [6] 1861-71 (2016). https://doi.org/10.1021/acs.chemmater.6b00038 - S. H. Yang, M. Y. Kim, and D. H. Kim, "Ionic Conductivity of Ga-Doped LLZO Prepared Using Couette-Taylor Reactor for All-Solid Lithium Batteries," J. Ind. Eng. Chem., 56 422-27 (2017). https://doi.org/10.1016/j.jiec.2017.07.041
-
C. L. Li, Y. F. Liu, and J. He, "Ga-Substituted
$Li_{7-}La_3Zr_2O_{12}$ : An Investigation Based on Grain Coarsening in Garnet Type Lithium Ion Conductors," J. Alloys Compd., 695 3744-52 (2017). https://doi.org/10.1016/j.jallcom.2016.11.277 - F. Aguesse, W. Manalastas, and L. Buannic, "Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal," ACS Appl. Mater. Interface, 9 [4] 3808-16 (2017). https://doi.org/10.1021/acsami.6b13925
- R. H. Brugge, A. K. O. Hekselman, A. Cavallaro, and F. M. Pesci, "Garnet Electrolytes for Solid State Batteries: Visualization of Moisture-Induced Chemical Degradation and Revealing its Impact on the Li-Ion Dynamics," Chem. Mater., 30 [11] 3704-13 (2018). https://doi.org/10.1021/acs.chemmater.8b00486
-
M. Rawlence, A. N. Filippin, A. Waeckerlin, and T. Y. Lin, "Effect of Gallium Substitution on Lithium Ion Conductivity and Phase Evolution in Sputtered
$Li_{7−3x}Ga_xLa_3Zr_2O_{12}$ Thin Films," ACS Appl. Mater. Inter., 10 [16] 13720-28 (2018). https://doi.org/10.1021/acsami.8b03163 -
S. Qin, X. Zhu, and Y. Jiang, "Extremely Dense Microstructure and Enhanced Ionic Conductivity in Hot-Isostatic Pressing Treated Cubic Garnet-Type Solid Electrolyte of
$Ga_2O_3$ -doped$Li_7La_3Zr_2O_{12}$ ," Funct. Mater. Lett., 11 [2] 1850029 (2018). https://doi.org/10.1142/S1793604718500297 -
S. Qin, X. Zhu, and Y. Jiang, "Growth of Self-Textured
$Ga^{3+}$ -Substituted$Li_7La_3Zr_2O_{12}$ Ceramics by Solid State Reaction and their Significant Enhancement in Ionic Conductivity," Appl. Phys. Lett., 112 [11] 113901 (2018). https://doi.org/10.1063/1.5019179 -
D. Rettenwander, "Structural and Electrochemical Consequences of Al and Ga Co substitution in
$Li_7La_3Zr_2O_{12}$ Solid Electrolytes," Chem. Mater., 28 [7] 2384-92 (2016). https://doi.org/10.1021/acs.chemmater.6b00579 -
C. A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, and W. Weppner, "Crystal Chemistry and Stability of "
$Li_7La_3Zr_2O_{12}$ ," Garnet: A Fast Lithium-Ion Conductor," Cheminform, 42 [13] 1089-97 (2015). - J. F. Wu, W. K. Pang, V. K. Peterson, L. Wei, and X. Guo, "Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries," ACS Appl. Mater. Interface, 9 [14] 12461-68 (2017). https://doi.org/10.1021/acsami.7b00614
-
A. Dumon, M. Huang, Y. Shen, and C. W. Nan, "High Li Ion Conductivity in Strontium Doped
$Li_7La_3Zr_2O_{12}$ Garnet," Solid State Ionics, 243 [28] 36-41 (2013). https://doi.org/10.1016/j.ssi.2013.04.016 -
S. Narayanan, F. Ramezanipour, and V. Thangadurai, "Enhancing Li Ion Conductivity of Garnet-Type
$Li_{5-}La_3Nb_2O_{12}$ by Y- and Li-Codoping: Synthesis, Structure, Chemical Stability, and Transport Properties," J. Phys. Chem. C, 116 [38] 20154-62 (2012). https://doi.org/10.1021/jp304737x -
G. Larraz, A. Orera, J. Sanz, I. Sobrados, V. Diez-Gomez, and M. L. Sanjuan, "NMR Study of Li Distribution in
$Li_{7−x}H_xLa_3Zr_2O_{12}$ Garnets," J. Mater. Chem. A, 3 [10] 5683-91 (2015). https://doi.org/10.1039/C4TA04570J -
M. Haritha, M. B. Suresh, and R. Johnson, "Synthesis and Evaluation of Thermal, Electrical, and Electrochemical Properties of
$Ba_{0.5}Sr_{0.5}Co_{0.04}Zn_{0.16}Fe_{0.8}O_{3-{\delta}}$ , as a Novel Cathode Material for IT-SOFC Applications," Ionics, 18 [9] 891-98 (2012). https://doi.org/10.1007/s11581-012-0692-1 -
X. Chen, T. Wang, W. Lu, T. Cao, M. Xue, B. Li, and C. Zhang, "Synthesis of Ta and Ca Doped
$Li_7La_3Zr_2O_{12}$ , Solid-State Electrolyte via Simple Solution Method and its Application in Suppressing Shuttle Effect of Li-S Battery," J. Alloys Compd., 744 386-94 (2018). https://doi.org/10.1016/j.jallcom.2018.02.134 -
X. Chen, T. Cao, M. Xue, H. Lv, B. Li, and C. Zhang, "Improved Room Temperature Ionic Conductivity of Ta and Ca doped
$Li_7La_3Zr_2O_{12}$ via a Modified Solution Method," Solid State Ionics, 314 92-7 (2018). https://doi.org/10.1016/j.ssi.2017.11.027 -
E. Rangasamy, J. Wolfenstine, and J. Allen, "The Effect of 24c-Site (A) Cation Substitution on the Tetragonal-Cubic Phase Transition in
$Li_{7-x}La_{3-x}A_xZr_2O_{12}$ Garnet-Based Ceramic Electrolyte," J. Power Sources, 230 261-66 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.076 -
R. A. Jonson and P. J. McGinn, "Tape Casting and Sintering of
$Li_7La_3Zr_{1.75}Nb_{0.25}Al_{0.1}O_{12}$ with$Li_3BO_3$ Additions," Solid State Ionics, 323 49-55 (2018). https://doi.org/10.1016/j.ssi.2018.05.015 -
T. Yang, Y. Li, and W. Wu, "The Synergistic Effect of Dual Substitution of Al and Sb on Structure and Ionic Conductivity of
$Li_7La_3Zr_2O_{12}$ Ceramic," Ceram. Int., 44 [2] 1538-44 (2018). https://doi.org/10.1016/j.ceramint.2017.10.072 - S. W. Baek, J. M. Lee, and T. Y. Kim, "Garnet Related Lithium Ion Conductor Processed by Spark Plasma Sintering for All Solid State Batteries, " J. Power Sources, 249 197-206(2014)? https://doi.org/10.1016/j.jpowsour.2013.10.089
- J. Sun, N. Zhao, and Y. Li, "A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes," Sci. Rep., 7 41217(2017) https://doi.org/10.1038/srep41217
-
N. Janani, S. Ramakumar, and S. Kannan, "Optimization of Lithium Content and Sintering Aid for Maximized
$Li^+$ Conductivity and Density in Ta-Doped$Li_7La_3Zr_2O_{12}$ ," J. Am. Ceram. Soc., 98 [7] 2039-46 (2015). https://doi.org/10.1111/jace.13578 -
H. Buschmann, S. Berendts, and B. Mogwitz, "Lithium Metal Electrode Kinetics and Ionic Conductivity of the Solid Lithium Ion Conductors '
$Li_7La_3Zr_2O_{12}$ ' and$Li_{7-x}La_3Zr_{2-x}Ta_xO_{12}$ with Garnet-Type Structure," J. Power Sources, 206 236-44 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.094 -
K. Hayamizu, Y. Matsuda, and M. Matsui, "Lithium Ion Diffusion Measurements on a Garnet-Type Solid Conductor
$Li_{6.6}La_3Zr_{1.6}Ta_{0.4}O_{12}$ by Using a Pulsed-Gradient Spin-Echo NMR Method," Solid State Nucl. Magn. Reson., 70 21-7 (2015). https://doi.org/10.1016/j.ssnmr.2015.05.002 -
M. Huang, W. Xu, Y. Shen, Y.-H. Lin, and C.-W. Nan, "XRay Absorption Near-Edge Spectroscopy Study on Ge-Doped
$Li_7La_3Zr_2O_{12}$ : Enhanced Ionic Conductivity and Defect Chemistry," Electrochim. Acta, 115 [3] 581-86 (2014). https://doi.org/10.1016/j.electacta.2013.11.020 -
X. Liu, Y. Li, T. Yang, et al., "High Lithium Ionic Conductivity in the Garnet-Type Oxide
$Li_{7-2x}La_3Zr_{2-x}Mo_xO_{12}$ (x=0?0.3) Ceramics by Sol-Gel Method," J. Am. Ceram. Soc., 100 [4] 1527-33 (2017). https://doi.org/10.1111/jace.14736 -
Y. Li, Z. Wang, and Y. Cao, "W-Doped
$Li_7La_3Zr_2O_{12}$ Ceramic Electrolytes for Solid State Li-ion Batteries," Electrochim. Acta, 180 37-42 (2015). https://doi.org/10.1016/j.electacta.2015.08.046 -
S. Ramakumar, L. Satyanarayana, and S. V. Manorama, "Structure and Li+ Dynamics of Sb-Doped
$Li_7La_3Zr_2O_{12}$ Fast Lithium Ion Conductors," Phys. Chem. Chem. Phys., 15 [27] 11327-38 (2013). https://doi.org/10.1039/c3cp50991e -
Z. Cao, W. Ren, and J. Liu, "Microstructure and Ionic Conductivity of Sb-doped
$Li_7La_3Zr_2O_{12}$ Ceramics," J. Inorg. Mater., 29 [2] 220-24 (2014). https://doi.org/10.3724/sp.j.1077.2013.13428 -
S. Ohta, T. Kobayashi, and T. Asaoka, "High Lithium Ionic Conductivity in the Garnet-Type Oxide
$Li_{7-X}La_3(Zr_{2-X}$ ,$Nb_X$ )$O_{12}$ (X=0-2)," J. Power Sources, 196 [6] 3342-45 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.089 -
C. Liu, K. Rui, and C. Shen, "Reversible Ion Exchange and Structural Stability of Garnet-Type Nb-Doped
$Li-{7-}La_3Zr_2O_{12}$ in Water for Applications in Lithium Batteries," J. Power Sources, 282 286-93 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.050 -
R. Murugan, S. Ramakumar, and N. Janani, "High Conductive Yttrium Doped
$Li_7La_3Zr_2O_{12}$ Cubic Lithium Garnet," Electrochem. Commun., 13 [12] 1373-75 (2011). https://doi.org/10.1016/j.elecom.2011.08.014 -
J. Gai, E. Zhao, and F. Ma, "Improving the Li-Ion Conductivity and Air Stability of Cubic
$Li_7La_3Zr_2O_{12}$ by the Co-Doping of Nb, Y on the Zr Site," J. Eur. Ceram. Soc., 38 [4] 1673-78 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.002 -
S. Hu, Y. Li, and R. Yang, "Structure and Ionic Conductivity of
$Li_7La_3Zr_{2-x}Ge_xO_{12}$ Garnet-like Solid Electrolyte for All Solid State Lithium Ion Batteries," Ceram. Int., 44 [6] 6614-18 (2018) https://doi.org/10.1016/j.ceramint.2018.01.065 -
A. Yoon Sang, N. R. Oh, and Y. A. Ri, "Preparation and Characterization of Ta-substituted
$Li_7La_3Zr_{2-x}O_{12}$ Garnet Solid Electrolyte by Sol-Gel Processing," J. Korean Ceram. Soc., 54 [4] 278-84 (2017). https://doi.org/10.4191/kcers.2017.54.4.02 -
S. Song, B. Chen, and Y. Ruan, "Gd-Doped
$Li_7La_3Zr_2O_{12}$ Garnet-Type Solid Electrolytes for All-Solid-State Li-Ion Batteries," Electrochim. Acta, 270 501-8 (2018). https://doi.org/10.1016/j.electacta.2018.03.101 -
X. Chen, T. Cao, and M. Xue, "Improved Room Temperature Ionic Conductivity of Ta and Ca Doped
$Li_7La_3Zr_2O_{12}$ via a Modified Solution Method," Solid State Ionics, 314 92-7 (2018). https://doi.org/10.1016/j.ssi.2017.11.027 -
C. Samson, K. He, and Y. Liu, "Electrochemical Performance of All-Solid-State Lithium Batteries Using Inorganic Lithium Garnets Particulate Reinforced PEO/
$LiClO_4$ Electrolyte," Electrochim. Acta, 253 430-38 (2017). https://doi.org/10.1016/j.electacta.2017.08.162 - Y. Ren, T. Liu, and Y. Shen, "Garnet-Type Oxide Electrolyte with Novel Porous-Dense Bilayer Configuration for Rechargeable All-Solid-State Lithium Batteries," Ionics, 23 [9] 2521-27 (2017). https://doi.org/10.1007/s11581-017-2224-5
-
S. Bernhard, R. Daniel, and B. Stefan, "Solid Electrolytes: Extremely Fast Charge Carriers in Garnet-Type
$Li_6La_3Zr-TaO_{12}$ Single Crystals," Ann. Phys., 529 [12] 1700140 (2017). https://doi.org/10.1002/andp.201700140 -
E. Hany, C. Edmund, and A. Corr Serena, "Enhancement of the Lithium Ion Conductivity of Ta-Doped
$Li_7La_3Zr_2O_{12}$ by Incorporation of Calcium," Dalton Trans., 46 [29] 9415-19 (2017). https://doi.org/10.1039/c7dt01573a -
Y. Tang, Z. Luo, and T. Liu, "Effects of
$B_2O_3$ on Microstructure and Ionic Conductivity of$Li_{6.5}La_3Zr_{1.5}Nb_{0.5}O_{12}$ Solid Electrolyte," Ceram. Int., 43 [15] 11879-84 (2017). https://doi.org/10.1016/j.ceramint.2017.06.035 - M. He, Z. Cui, and C. Chen, "Formation of Self-Limited, Stable and Conductive Interfaces between Garnet Electrolytes and Lithium Anodes for Reversible Lithium Cycling in Solid-State Batteries," J. Mater. Chem. A, 6 [24] 11463-70 (2018). https://doi.org/10.1039/C8TA02276C
-
H. Kyle, S. A. Junio, and T. Venkataraman, "Characterization of Lithium-Rich Garnet-Type
$Li_{6.5}La_{2.5}Ba_{0.5}ZrTaO_{12}$ for Beyond Intercalation Chemistry-Based Lithium-Ion Batteries," Solid State Ionics, 318 71-81 (2018). https://doi.org/10.1016/j.ssi.2017.09.005 -
X. Huang, T. Xiu, and E. Badding Michael, "Two-Step Sintering Strategy to Prepare Dense Li-Garnet Electrolyte Ceramics with High
$Li^+$ Conductivity," Ceram. Int., 44 [5] 5660-67 (2018). https://doi.org/10.1016/j.ceramint.2017.12.217
피인용 문헌
- The Role of Interlayer Chemistry in Li‐Metal Growth through a Garnet‐Type Solid Electrolyte vol.10, pp.12, 2019, https://doi.org/10.1002/aenm.201903993
- A Chitosan/Poly(ethylene oxide)‐Based Hybrid Polymer Composite Electrolyte Suitable for Solid‐State Lithium Metal Batteries vol.5, pp.10, 2019, https://doi.org/10.1002/slct.202000260
- Dual-Doped Cubic Garnet Solid Electrolytes with Superior Air Stability vol.12, pp.23, 2020, https://doi.org/10.1021/acsami.0c01289
- Garnet-Based Solid-State Li Batteries: From Materials Design to Battery Architecture vol.6, 2019, https://doi.org/10.1021/acsenergylett.1c00401
- B2O3-Doped LATP Glass-Ceramics Studied by X-ray Diffractometry and MAS NMR Spectroscopy Methods vol.11, pp.2, 2021, https://doi.org/10.3390/nano11020390
- Tri-Doping of Sol-Gel Synthesized Garnet-Type Oxide Solid-State Electrolyte vol.12, pp.2, 2019, https://doi.org/10.3390/mi12020134
- All-Solid-State Lithium-Ion Batteries with Oxide/Sulfide Composite Electrolytes vol.14, pp.8, 2019, https://doi.org/10.3390/ma14081998
- Crystal Structure and Preparation of Li7La3Zr2O12 (LLZO) Solid-State Electrolyte and Doping Impacts on the Conductivity: An Overview vol.2, pp.3, 2021, https://doi.org/10.3390/electrochem2030026
- Energy materials for energy conversion and storage: focus on research conducted in Korea vol.58, pp.6, 2019, https://doi.org/10.1007/s43207-021-00152-2
- Freestanding Trilayer Hybrid Solid Electrolyte with Electrospun Interconnected Al-LLZO Nanofibers for Solid-State Lithium-Metal Batteries vol.4, pp.12, 2021, https://doi.org/10.1021/acsaem.1c03202