DOI QR코드

DOI QR Code

Recent Research Progresses in 2D Nanomaterial-based Photodetectors

2D 나노소재기반 광 센서 소자의 최근 연구 동향

  • Jang, Hye Yeon (Department of Advanced Material Engineering, Chungbuk National University) ;
  • Nam, Jae Hyeon (Department of Advanced Material Engineering, Chungbuk National University) ;
  • Cho, Byungjin (Department of Advanced Material Engineering, Chungbuk National University)
  • 장혜연 (충북대학교 신소재공학과) ;
  • 남재현 (충북대학교 신소재공학과) ;
  • 조병진 (충북대학교 신소재공학과)
  • Received : 2019.02.19
  • Accepted : 2019.03.05
  • Published : 2019.03.30

Abstract

Atomically thin two-dimensional (2D) nanomaterials, including transition metal dichalcogenides (TMDs), graphene, boron nitride, and black phosphorus, have opened up new opportunities for the next generation optoelectronics owing to their unique properties such as high absorbance coefficient, high carrier mobility, tunable band gap, strong light-matter interaction, and flexibility. In this review, photodetectors based on 2D nanomaterials are classified with respect to critical element technology (e.g., active channel, contact, interface, and passivation). We discuss key ideas for improving the performance of the 2D photodetectors. In addition, figure-of-merits (responsivity, detectivity, response speed, and wavelength spectrum range) are compared to evaluate the performance of diverse 2D photodetectors. In order to achieve highly reliable 2D photodetectors, in-depth studies on material synthesis, device structure, and integration process are still essential. We hope that this review article is able to render the inspiration for the breakthrough of the 2D photodetector research field.

Keywords

References

  1. Yao, J. D., Zheng, Z. Q., Shao, J. M. & Yang, G. W. "Stable, highly-responsive and broadband photodetection based on large-area multilayered $WS_2$ films grown by pulsed-laser deposition". Nanoscale 7, 14974-14981 (2015). https://doi.org/10.1039/C5NR03361F
  2. Octon, T. J., Nagareddy, V. K., Russo, S., Craciun, M. F. & Wright, C. D. "Fast High-Responsivity Few- Layer $MoTe_2$ Photodetectors". Adv. Optical Mater. 4, 1750-1754 (2016). https://doi.org/10.1002/adom.201600290
  3. Yim, C. et al. "High-Performance Hybrid Electronic Devices from Layered $PtSe_2$ Films Grown at Low Temperature". ACS Nano 10, 9550-9558 (2016). https://doi.org/10.1021/acsnano.6b04898
  4. Jiao, L., Jie, W., Yang, Z., Wang, Y. & Chen, Z. "Layer-dependent photoresponse of 2D $MoS_2$ films prepared by pulsed laser deposition". J. Mater. Chem. C 7, 2522-2529 (2019). https://doi.org/10.1039/c8tc04612c
  5. Huang, M. et al. "Broadband Black-Phosphorus Photodetectors with High Responsivity". Adv. Mater. 28, 3481-3485 (2016). https://doi.org/10.1002/adma.201506352
  6. Miao, J. et al. "Single Pixel Black Phosphorus Photodetector for Near-Infrared Imaging". Small 14, 1702082-1702088 (2018). https://doi.org/10.1002/smll.201702082
  7. Jia, Z. et al. "Enhanced Photoresponse of SnSe-Nanocrystals-Decorated $WS_2$ Monolayer Phototransistor". ACS Appl. Mater. Interfaces 8, 4781-4788 (2016). https://doi.org/10.1021/acsami.5b12137
  8. Qiao, S. et al. "A vertically layered $MoS_2$/Si heterojunction for an ultrahigh and ultrafast photoresponse photodetector". J. Mater. Chem. C 6, 3233-3239 (2018). https://doi.org/10.1039/C7TC05896A
  9. Kim, H., Patel, M., Kim, J. & Jeong, M. S. "Growth of Wafer-Scale Standing Layers of $WS_2$ for Self- Biased High-Speed UV-Visible-NIR Optoelectronic Devices". ACS Appl. Mater. Interfaces 10, 3964-3974 (2018). https://doi.org/10.1021/acsami.7b16397
  10. Sun, M. et al. "Heterostructured graphene quantum dot / $WSe_2$ / Si photodetector with suppressed dark current and improved detectivity". Nano Research 11 (6), 3233-3243 (2018). https://doi.org/10.1007/s12274-017-1855-1
  11. Nguyen, D. A. et al. "Highly Enhanced Photoresponsivity of a Monolayer $WSe_2$ Photodetector with Nitrogen-Doped Graphene Quantum Dots". ACS Appl. Mater. Interfaces 10, 10322-10329 (2018). https://doi.org/10.1021/acsami.7b18419
  12. Yu, Y. et al. "PbS-Decorated $WS_2$ Phototransistors with Fast Response". ACS Photonics 4, 950-956 (2017). https://doi.org/10.1021/acsphotonics.6b01049
  13. Hu, C. et al. "Synergistic Effect of Hybrid PbS Quantum Dots / 2D-$WSe_2$ Toward High Performance and Broadband Phototransistors". Adv. Funct. Mater. 27, 1603605-1603612 (2017). https://doi.org/10.1002/adfm.201603605
  14. Wu, H. et al. "All-Inorganic Perovskite Quantum Dot-Monolayer $MoS_2$ Mixed-Dimensional van der Waals Heterostructure for Ultrasensitive Photodetector." Adv. Sci. 5, 1801219-1801227, (2018).
  15. Bera, S., Gupta, D., Ray, S. K. & Sapra, S. "$MoSe_2$-$Cu_2S$ Vertical p-n Nanoheterostructures for High-Performance Photodetectors". ACS Appl. Mater. Interfaces 11, 4074-4083, (2019) https://doi.org/10.1021/acsami.8b16205
  16. Guo, N. et al. "Hybrid $WSe_2$-$In_2O_3$ Phototransistor with Ultrahigh Detectivity by Efficient Suppression of Dark Currents". ACS Appl. Mater. Interfaces 9, 34489-34496 (2017). https://doi.org/10.1021/acsami.7b10698
  17. Henning, A. et al. "Charge Separation at Mixed- Dimensional Single and Multilayer $MoS_2$/Silicon Nanowire Heterojunctions". ACS Appl. Mater. Interfaces 10, 16760-16767 (2018). https://doi.org/10.1021/acsami.8b03133
  18. Kim, S. J. et al. "Fabrication of high-performance flexible photodetectors based on Zn-doped $MoS_2$/graphene hybrid fibers". J. Mater. Chem. C 5, 12354-12359 (2017). https://doi.org/10.1039/C7TC04274D
  19. Ye, L., Li, H., Chen, Z. & Xu, J. "Near-Infrared Photodetector Based on $MoS_2$/Black Phosphorus Heterojunction". ACS Photonics 3, 692-699 (2016). https://doi.org/10.1021/acsphotonics.6b00079
  20. Long, M. et al. "Broadband Photovoltaic Detectors Based on an Atomically Thin Heterostructure". Nano Lett. 16 (4), 2254-2259 (2016). https://doi.org/10.1021/acs.nanolett.5b04538
  21. Chen, Z. A. "high performance self-driven photodetector based on a graphene/InSe/$MoS_2$ vertical heterostructure". J. Mater. Chem. C 6, 12407-124122 (2018). https://doi.org/10.1039/c8tc04378g
  22. Jeong, H. et al. "Metal-Insulator-Semiconductor Diode Consisting of Two-Dimensional Nanomaterials". Nano Lett. 16, 1858-1862 (2016). https://doi.org/10.1021/acs.nanolett.5b04936
  23. Tan, H. et al. "Ultrathin 2D Photodetectors Utilizing Chemical Vapor Deposition Grown $WS_2$ With Graphene Electrodes". ACS Nano 10 (8), 7866-7873 (2016). https://doi.org/10.1021/acsnano.6b03722
  24. Tan, H. et al. "Lateral Graphene-Contacted Vertically Stacked $WS_2$ / $MoS_2$ Hybrid Photodetectors with Large Gain". Adv. Mater. 29, 1702917-1702924 (2017). https://doi.org/10.1002/adma.201702917
  25. Zheng, W. et al. "Anisotropic Growth of Nonlayered CdS on $MoS_2$ Monolayer for Functional Vertical Heterostructures". Adv. Funct. Mater. 16, 2648-2654 (2016). https://doi.org/10.1002/adfm.201504775
  26. Yang, T. et al. " Van der Waals epitaxial growth and optoelectronics of large-scale $WSe_2$/$SnS_2$ vertical bilayer p-n junctions". Nat. Commun. 8, 1906-1914 (2017). https://doi.org/10.1038/s41467-017-02093-z
  27. Xue, Y. et al. "Scalable Production of a Few-Layer $MoS_2$/$WS_2$ Vertical Heterojunction Array and Its Application for Photodetectors". ACS Nano 10, 573-580 (2016). https://doi.org/10.1021/acsnano.5b05596
  28. Chen, C. et al. "Large-Scale Synthesis of a Uniform Film of Bilayer $MoS_2$ on Graphene for 2D Heterostructure Phototransistors". ACS Appl. Mater. Interfaces 8 (29), 19004-19011 (2016). https://doi.org/10.1021/acsami.6b00751
  29. Wang, F. et al. "Tunable GaTe-$MoS_2$ van der Waals p-n Junctions with Novel Optoelectronic Performance". Nano Lett. 15, 7558-7566 (2015). https://doi.org/10.1021/acs.nanolett.5b03291
  30. Yang, S. et al. "Self-Driven Photodetector and Ambipolar Transistor in Atomically Thin GaTe-$MoS_2$ p-n vdW Heterostructure". ACS Appl. Mater. Interfaces 8 (4), 2533-2539 (2016). https://doi.org/10.1021/acsami.5b10001
  31. Huang, Y. et al. "Van der Waals Coupled Organic Molecules with Monolayer $MoS_2$ for Fast Response Photodetectors with Gate-Tunable Responsivity". ACS Nano 12, 4062-4073 (2018). https://doi.org/10.1021/acsnano.8b02380
  32. Xu, H. et al. "High Detectivity and Transparent Few- Layer $MoS_2$/Glassy-Graphene Heterostructure Photodetector". Adv. Mater. 30 (13), 1706561-1706569, (2018). https://doi.org/10.1002/adma.201706561
  33. Zhang, K. et al. "Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II $MoTe_2$ / $MoS_2$ van der Waals Heterostructures". ACS Nano 10, 3852-3858 (2016). https://doi.org/10.1021/acsnano.6b00980
  34. Li, B. et al. "3D Band Diagram and Photoexcitation of 2D - 3D Semiconductor Heterojunctions". Nano Lett. 15, 5919-5925 (2015). https://doi.org/10.1021/acs.nanolett.5b02012
  35. Kim, Y. et al. "Facile Fabrication of a Two-Dimensional TMD/Si Heterojunction Photodiode by Atmospheric-Pressure Plasma-Enhanced Chemical Vapor Deposition". ACS Appl. Mater. Interfaces 10, 36136-36143 (2018). https://doi.org/10.1021/acsami.8b12896
  36. Hwang, I., Kim, J. S., Cho, S. H., Jeong, B. & Park, C. "Flexible Vertical p-n Diode Photodetectors with Thin N-type $MoSe_2$ Films Solution-Processed on Water Surfaces". ACS Appl. Mater. Interfaces 10, 34543-34552 (2018). https://doi.org/10.1021/acsami.8b07279
  37. Geng, X. et al. "Design and construction of ultra-thin $MoSe_2$ nanosheet- based heterojunction for highspeed and low-noise photodetection". Nano Research 9, 2641-2651 (2016). https://doi.org/10.1007/s12274-016-1151-5
  38. Kim, H.-S. et al. "High-performing $MoS_2$-embedded Si photodetector". Materials Science in Semiconductor Processing 71, 35-41 (2017). https://doi.org/10.1016/j.mssp.2017.06.039
  39. Lan, C. et al. "Zener Tunneling and Photoresponse of a $WS_2$ /Si van der Waals Heterojunction". ACS Appl. Mater. Interfaces 8, 18375-18382 (2016). https://doi.org/10.1021/acsami.6b05109
  40. Yim, C. et al. "Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes". Nano Lett. 18, 1794-1800 (2018). https://doi.org/10.1021/acs.nanolett.7b05000
  41. Zheng, Z. et al. "Fabrication of a high performance Zn$In_2$S4/Si heterostructure photodetector array for weak signal detection". J. Mater. Chem. C 6, 12928-12939 (2018). https://doi.org/10.1039/c8tc04692a
  42. Yang, J. et al. "$MoS_2$ - InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity". ACS Appl. Mater. Interfaces 8, 8576-8582 (2016). https://doi.org/10.1021/acsami.5b11709
  43. Pak, S. W., Chu, D., Song, D. Y., Lee, S. K. & Kim, E. K. "Enhancement of near-infrared detectability from InGaZnO thin film transistor with $MoS_2$ light absorbing layer". Nanotechnology 28, 475206 (2017). https://doi.org/10.1088/0957-4484/28/47/475206
  44. Ma, C. et al. "Heterostructured $WS_2$/$CH_3NH_3PbI_3$ Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity". Adv. Mater. 28 (19) 3683-3689 (2016). https://doi.org/10.1002/adma.201600069
  45. Jo, S. et al. "A High-Performance $WSe_2$/ h-BN Photodetector using a Triphenylphosphine ($PPh_3$)-Based n-Doping Technique" Adv. Mater. 28, 4824-4831 (2016) https://doi.org/10.1002/adma.201600032
  46. Xiang, D. et al. "Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus". Nature Communications 6, 6485 (2015). https://doi.org/10.1038/ncomms7485
  47. Kang, D. et al. "High-Performance Transition Metal Dichalcogenide Photodetectors Enhanced by Self- Assembled Monolayer Doping". Adv. Funct. Mater. 25, 4219-4227 (2015). https://doi.org/10.1002/adfm.201501170
  48. Kang, D. et al. "Self-Assembled Layer (SAL)-Based Doping on Black Phosphorus (BP) Transistor and Photodetector". ACS Photonics 4, 1822-1830 (2017). https://doi.org/10.1021/acsphotonics.7b00398
  49. Lu, J. et al. "Hybrid Bilayer $WSe_2$-$CH_3NH_3PbI_3$ Organolead Halide Perovskite as a High-Performance Photodetector". Angew. Chem. 128, 12124-12128 (2016). https://doi.org/10.1002/ange.201603557
  50. Lee, K. H., Kim, T., Shin, H. & Kim, S. "Highly Efficient Photocurrent Generation from Nano - crystalline Graphene - Molybdenum Disulfide Lateral Interfaces". Adv. Mater. 28, 1793-1798 (2016). https://doi.org/10.1002/adma.201504865
  51. Wu, W. et al. "Self-Powered Photovoltaic Photodetector Established on Lateral Monolayer $MoS_2$-$WS_2$ Heterostructures". Nano Energy 51, 45-53 (2018). https://doi.org/10.1016/j.nanoen.2018.06.049
  52. Yao, J. & Yang, G. "Flexible and High-Performance All-2D Photodetector for Wearable Devices". Small 14, 1704524-1704531 (2018). https://doi.org/10.1002/smll.201704524
  53. Pak, Y., Park, W., Mitra, S., Devi, A. A. S., Loganathan, K., Kumaresan, Y., Kim, Y., Cho, B., Jung, G.-Y., Hussain, M. M., & Roqan, I. S. "Enhanced Performance of $MoS_2$ Photodetectors by Inserting an ALD-Processed $TiO_2$ Interlayer". Small 14, 1703176-1703181 (2018). https://doi.org/10.1002/smll.201703176
  54. Mandrus, D., Zhou, Z. & Xu, Y. "High-Performance $WSe_2$ Phototransistors with 2D/2D Ohmic Contacts". Nano Lett. 18, 2766-2771 (2018). https://doi.org/10.1021/acs.nanolett.7b04205
  55. Liu, J. et al. "Pronounced Photovoltaic Response from Multi-layered $MoTe_2$ Phototransistor with Asymmetric Contact Form". Nanoscale Research Letters 12, 603-610 (2017). https://doi.org/10.1186/s11671-017-2373-5
  56. Zhou, C. et al. "Self-Driven Metal-Semiconductor -Metal $WSe_2$ Photodetector with Asymmetric Contact Geometries". Adv. Funct. Mater. 28, 1802954-1802961 (2018). https://doi.org/10.1002/adfm.201802954
  57. Chen, J., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. "Intrinsic and extrinsic performance limits of graphene devices on $SiO_2$". Nature Nanotechnology 3, 206-209 (2008). https://doi.org/10.1038/nnano.2008.58
  58. Phys, A. "$MoS_2$ nanosheet photodetectors with ultrafast response". Appl. Phys. Lett. 111, 153502 (2017). https://doi.org/10.1063/1.5001671
  59. Britnell, L. et al. "Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers". Nano Lett. 12, 1707-1710 (2012). https://doi.org/10.1021/nl3002205
  60. Britnell, L. et al. "Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures". Science 335, 947-950 (2012). https://doi.org/10.1126/science.1218461
  61. Samassekou, H. et al. "Viable route towards largearea 2D $MoS_2$ using magnetron sputtering". 2D Mater. 4, 021002 (2017). https://doi.org/10.1088/2053-1583/aa5290
  62. Nazir, G. et al. "Comparison of Electrical and Photoelectrical Properties of $ReS_2$ Field-Effect Transistors on Different Dielectric Substrates". ACS Appl. Mater. Interfaces 10, 32501-32509 (2018). https://doi.org/10.1021/acsami.8b06728
  63. Zhu, Y. et al. "High-Efficiency Monolayer Molybdenum Ditelluride Light-Emitting Diode and Photodetector". ACS Appl. Mater. Interfaces 10, 43291-43298 (2018). https://doi.org/10.1021/acsami.8b14076
  64. Huo, N., Gupta, S. & Konstantatos, G. "$MoS_2$-HgTe Quantum Dot Hybrid Photodetectors beyond 2 ${\mu}$m>>. Adv. Mater. 29, 1606576-1606580 (2017). https://doi.org/10.1002/adma.201606576
  65. Liu, Q. et al. "Printable Transfer-Free and Wafer- Size $MoS_2$ /Graphene van der Waals Heterostructures for High-Performance Photodetection". ACS Appl. Mater. Interfaces 9, 12728-12733 (2017). https://doi.org/10.1021/acsami.7b00912
  66. Parzinger, E., et al. "Photocatalytic Stability of Single-and Few-Layer $MoS_2$". ACS Nano 9 (11), 11302-11309 (2015). https://doi.org/10.1021/acsnano.5b04979
  67. Yamamoto, M., Dutta, S., Aikawa, S., Nakaharai, S. & Wakabayashi, K. "Self-Limiting Layer-by-Layer Oxidation of Atomically Thin $WSe_2$". Nano Lett. 15, 2067-2073 (2015). https://doi.org/10.1021/nl5049753
  68. Ahn, S. et al. "Prevention of Transition Metal Dichalcogenide Photodegradation by Encapsulation with h‑BN Layers". ACS Nano 10 (9), 8973-8979 (2016). https://doi.org/10.1021/acsnano.6b05042
  69. Cho, A., Song, M., Kang, D. & Kwon, J. "Two-Dimensional $WSe_2$ / $MoS_2$ p-n Heterojunction-Based Transparent Photovoltaic Cell and Its Performance Enhancement by Fluoropolymer Passivation". ACS Appl. Mater. Interfaces 10, 35972-35977 (2018). https://doi.org/10.1021/acsami.8b12250
  70. Kufer, D. & Konstantatos, G. "Highly Sensitive, Encapsulated $MoS_2$ Photodetector with Gate Controllable Gain and Speed". Nano Lett. 15, 7307-7313 (2015). https://doi.org/10.1021/acs.nanolett.5b02559
  71. Namgung, S., Shaver, J., Oh, S. & Koester, S. J. "Multimodal Photodiode and Phototransistor Device Based on Two-Dimensional Materials". ACS Nano 10 (11), 10500-10506 (2016). https://doi.org/10.1021/acsnano.6b06468
  72. Gong, F. et al. "High-Sensitivity Floating-Gate Phototransistors Based on $WS_2$ and $MoS_2$". Adv. Funct. Mater. 26, 6084-6090 (2016). https://doi.org/10.1002/adfm.201601346
  73. Wang, X. et al. "Ultrasensitive and Broadband $MoS_2$ Photodetector Driven by Ferroelectrics". Adv. Mater. 27, 6575-6581 (2015). https://doi.org/10.1002/adma.201503340
  74. Wu, G., Wang, X., Wang, P., Huang, H. & Chen, Y . "Visible to short wavelength infrared $In_2$ $Se_3$-nanoflake photodetector gated by a ferroelectric polymer." Nanotechnology 27, 364002-364008 (2016). https://doi.org/10.1088/0957-4484/27/36/364002