References
- C. S. Hwang, "Prospective of semiconductor memory devices: from memory system to materials", Adv. Electron. Mater. 1[6], 1400056 (2015). https://doi.org/10.1002/aelm.201400056
- S. K. Kim, M. Popovici, "Future of dynamic random-access memory as main memory", MRS Bull. 43[5] 334 (2018). https://doi.org/10.1557/mrs.2018.95
-
S. W. Lee, J. H. Han, C. S. Hwang, "Electronic Conduction Mechanism of
$SrTiO_3$ Thin Film Grown on Ru Electrode by Atomic Layer Deposition", Electrochem. Solid St. 12[11], G69 (2009) https://doi.org/10.1149/1.3212897 - Fu-Chien Chiu, "A Review on Conduction Mechanisms in Dielectric Films", Adv. Mater. Sci. Eng. 2014, 578168 (2014)
- T. Ikuno, H. Okamoto, Y. Sugiyama, H. Nakano, F. Yamada, and I. Kamiya, "Electron transport properties of Si nanosheets: Transition from direct tunneling to Fowler-Nordheim tunneling", Appl. Phys. Lett. 99[2], 023107 (2011). https://doi.org/10.1063/1.3610486
-
M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, Y. H. Lee, S. D. Hyun, C. S. Hwang, "Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric
$Hf_{0.5}Zr_{0.5}O_2$ thin films", J. Mater. Chem. C 3[24], 6291 (2015). https://doi.org/10.1039/C5TC01074H -
D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, C. S. Hwang, "Atomic structure of conducting nanofilaments in
$TiO_2$ resistive switching memory", Nat. Nanotechnol. 5[2], 148 (2010). https://doi.org/10.1038/nnano.2009.456 -
K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, C. S. Hwang, "Anode-interface localized filamentary mechanism in resistive switching of
$TiO_2$ thin films", Appl. Phys. Lett. 91[1], 012907 (2007). https://doi.org/10.1063/1.2749846 -
A. Q. Jiang, H. J. Lee, G. H. Kim, C. S. Hwang, "The Inlaid
$Al_2O_3$ Tunnel Switch for Ultrathin Ferroelectric Films", Adv. Mater. 21[28], 2870 (2009). https://doi.org/10.1002/adma.200802924 - A. Q. Jiang, H. J. Lee, C. S. Hwang, J. F. Scott, "Sub-Picosecond Processes of Ferroelectric Domain Switching from Field and Temperature Experiments", Adv. Funct. Mater. 22[1], 192 (2012). https://doi.org/10.1002/adfm.201101521
- A.-Q. Jiang, H. J. Lee, C. S. Hwang, T.-A. Tang, "Resolving the Landauer paradox in ferroelectric switching by high-field charge injection", Phys. Rev. B 80[2], 024119 (2009). https://doi.org/10.1103/physrevb.80.024119
- S. Salahuddin, S. Datta, "Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices", Nano Lett. 8[2], 405 (2008). https://doi.org/10.1021/nl071804g
- A. I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S. R. Bakaul, R. Ramesh, S. Salahuddin, Nat. Mater. 14, 182 (2015). https://doi.org/10.1038/nmat4148
- J. Iniguez, P. Zubko, I. Luk'yanchuk, A. Cano, "Ferroelectric negative capacitance", Nat. Rev. Mater. 4, 243 (2019). https://doi.org/10.1038/s41578-019-0089-0
- H. W. Park, J. Roh, Y. B. Lee, C. S. Hwang, "Modeling of Negative Capacitance in Ferroelectric Thin Films", Adv. Mater. 31[32], 1805266 (2019). https://doi.org/10.1002/adma.201805266
-
Y. J. Kim, H. Yamada, T. Moon, Y. J. Kwon, C. H. An, H. J. Kim, K. D. Kim, Y. H. Lee, S. D. Hyun, M. H. Park, C. S. Hwang, "Time-Dependent Negative Capacitance Effects in
$Al_2O_3/BaTiO_3$ Bilayers", Nano Lett. 16[7], 4375 (2016). https://doi.org/10.1021/acs.nanolett.6b01480 - Y. J. Kim, H. W. Park, S. D. Hyun, H. J. Kim, K. D. Kim, Y. H. Lee, T. Moon, Y. B. Lee, M. H. Park, C. S. Hwang, "Voltage Drop in a Ferroelectric Single Layer Capacitor by Retarded Domain Nucleation", Nano Lett. 17[12], 7796 (2017). https://doi.org/10.1021/acs.nanolett.7b04008
- M. Hoffmann, F. P. G. Fengler, M. Herzig, T. Mittmann, B. Max, U. Schroeder, R. Negrea, P. Lucian, S. Slesazeck, T. Mikolajick, "Unveiling the double-well energy landscape in a ferroelectric layer", Nature 565, 464 (2019). https://doi.org/10.1038/s41586-018-0854-z
-
K . D. Kim, Y. J. Kim, M. H. Park, H. W. Park, Y. J. Kwon, Y. B. Lee, H. J. Kim, T. Moon, Y. H. Lee, S. D. Hyun, B. S. Kim, C. S. Hwang, "Transient Negative Capacitance Effect in Atomic-Layer-Deposited
$Al_2O_3/Hf_{0.3}Zr_{0.7}O_2$ Bilayer Thin Film", Adv. Funct. Mater. 29[17], 1808228 (2019). https://doi.org/10.1002/adfm.201808228 - T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder, U. Bottger, "Ferroelectricity in hafnium oxide thin films", Appl. Phys. Lett. 99[10], 102903 (2011). https://doi.org/10.1063/1.3634052
-
J. Muller, T. S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, T. Mikolajick, "Ferroelectricity in simple binary
$ZrO_2$ and$HfO_2$ ", Nano Lett. 12[8], 4318 (2012). https://doi.org/10.1021/nl302049k - M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Mueller, A. Kersch, U. Schroeder, T. Mikolajick, C. S. Hwang, "Ferroelectricity and Antiferroelectricity of Doped Thin HfO2-Based Films", Adv. Mater. 27[11], 1811 (2015). https://doi.org/10.1002/adma.201404531
-
M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, C. S. Hwang, "Thin
$Hf_xZr1_{2-x}O_2$ Films: A New Lead-Free System for Electrostatic Supercapacitors with Large Energy Storage Density and Robust Thermal Stability", Adv. Energy Mater. 4[16], 1400610 (2014). https://doi.org/10.1002/aenm.201400610 -
M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, C. S. Hwang, "Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric
$Hf_xZr_{1-x}O_2$ films", Nano Energy 12, 131 (2015). https://doi.org/10.1016/j.nanoen.2014.09.025 - M. H. Park, H. J. Kim, G. Lee, J. Park, Y. H. Lee, Y. J. Kim, T. Moon, K. D. Kim, S. D. Hyun, H. W. Park, H. J. Chang, J.-H. Choi, C. S. Hwang, "A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices", Appl. Phys. Rev. 6[4], 041403 (2019). https://doi.org/10.1063/1.5118737
- M. H. Park, C. S. Hwang, "Fluorite-structure antiferroelectrics", Rep. Prog. Phys. 82[12], 124502 (2019). https://doi.org/10.1088/1361-6633/ab49d6
-
H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, T. Moon, K. D. Kim, S. D. Hyun, C. S. Hwang, "A study on the wake-up effect of ferroelectric
$Hf_{0.5}Zr_{0.5}O_2$ films by pulse-switching measurement", Nanoscale 8[3], 1383 (2016). https://doi.org/10.1039/C5NR05339K - D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, C. S. Hwang, "Emerging memories: resistive switching mechanisms and current status", Rep. Prog. Phys. 75[7], 076502 (2012). https://doi.org/10.1088/0034-4885/75/7/076502
- D. S. Jeong, K. M. Kim, S. Kim, B. J. Choi, C. S. Hwang, "Memristors for energy-efficient new computing paradigms", Adv. Electron. Mater. 2[9], 1600090 (2016). https://doi.org/10.1002/aelm.201600090
- B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, "Resistive switching mechanism of thin films grown by atomic-layer deposition" J. Appl. Phys. 98[3], 033715 (2005). https://doi.org/10.1063/1.2001146
-
S. J. Song, J. Y. Seok, J. H. Yoon, K. M. Kim, G. H. Kim, M. H. Lee, C. S. Hwang, "Real-time identification of the evolution of conducting nano-filaments in
$TiO_2$ thin film ReRAM", Sci. Rep. 3, 3443 (2013). https://doi.org/10.1038/srep03443