DOI QR코드

DOI QR Code

POINTWISE CONTINUOUS SHADOWING AND STABILITY IN GROUP ACTIONS

  • Dong, Meihua (Department of Mathematics Yanbian University) ;
  • Jung, Woochul (Department of Mathematics Chungnam National University) ;
  • Lee, Keonhee (Department of Mathematics Chungnam National University)
  • Received : 2019.06.12
  • Accepted : 2019.10.30
  • Published : 2019.11.15

Abstract

Let Act(G, X) be the set of all continuous actions of a finitely generated group G on a compact metric space X. In this paper, we study the concepts of topologically stable points and continuous shadowable points of a group action T ∈ Act(G, X). We show that if T is expansive then the set of continuous shadowable points is contained in the set of topologically stable points.

Keywords

Acknowledgement

supported by research fund of Chungnam National University.

References

  1. N.P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, Proc. Amer. Math. Soc., 146 (2018), 1047-1057. https://doi.org/10.1090/proc/13654
  2. S. Choi, C. Chu, and K. Lee, Recurrence in persistent dynamical systems, Bull. Austral. Math. Soc., 43 (1991), 509-517. https://doi.org/10.1017/S0004972700029361
  3. N. Kawaguchi, Quantitative shadowable points, Dyn. Syst., 32 (2017), 504-518. https://doi.org/10.1080/14689367.2017.1280664
  4. S. Kim and K. Lee, Shadowable points for finitely generated group actions, J. Chungcheong Math. Soc., 31 (2018), 411-420. https://doi.org/10.14403/JCMS.2018.31.1.411
  5. N. Koo, K. Lee and C.A. Morales, Pointwise topological stability, Proc. Edinburg Math. Soc., 61 (2018), 1179-1191. https://doi.org/10.1017/S0013091518000263
  6. K. Lee, Continuous inverse shadowing and hyperbolicity, Bull. Austral. Math. Soc., 67 (2003), 15-26. https://doi.org/10.1017/S0004972700033487
  7. C.A. Morales, Shadowable points, Dyn. Syst., 31 (2016), 347-356. https://doi.org/10.1080/14689367.2015.1131813
  8. A.V. Osipov and S.B. Tikhomirov, Shadowing for actions of some finitely generated groups, Dyn Syst., 29 (2014), 337-351. https://doi.org/10.1080/14689367.2014.902037
  9. P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems, Discrete Contin. Dyn. Syst., 20 (2008), 1039-1056. https://doi.org/10.3934/dcds.2008.20.1039
  10. S.Y. Pilyugin, Inverse shadowing in group action, Dyn. Syst., 32 (2017), 198-210. https://doi.org/10.1080/14689367.2016.1173651
  11. S.Y. Pilyugin and S.B. Tikhomirov, Shadowing in actions of some abelian groups, Fund. Math., 179 (2003), 83-96. https://doi.org/10.4064/fm179-1-7
  12. P. Walters, On the pseudo-orbit tracing property and its relationship to stability, Lecture Notes in Math. 668, Springer, Berlin. 1978, 231-244.
  13. K. Yano, Topologically stable homeomorphisms of the circle, Nagoya Math., 79 (1980), 145-149. https://doi.org/10.1017/S0027763000018997