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Asena Çetinkaya∗

Department of Mathematics and Computer Sciences, İstanbul Kültür University,
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Abstract. Using the concept of bounded boundary rotation, we investigate various

properties of two new generalized classes of spirallike and Robertson functions of complex

order with bounded boundary rotations.

1. Introduction

Let D be the unit disc {z : |z| < 1} and suppose A is the class of functions analytic
in D satisfying the conditions f(0) = 0 and f ′(0) = 1. Then each function f in A

has the Taylor expression

(1.1) f(z) = z +

∞∑
n=2

anz
n,

because of the conditions f(0) = f ′(0)− 1 = 0.
Let Vk denote the family of functions f in A that map the unit disc D con-

formally onto an image domain f(D) of bounded boundary rotation at most kπ.
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The concept of functions of bounded boundary rotation was initiated by Loewner
[14] in 1917. However, it was Paatero [22, 23] who systematically studied the class
Vk. In Pinchuk [25], it is proved that the functions in Vk are close-to-convex in
D if 2 ≤ k ≤ 4. Brannan in [8] showed that Vk is a subclass of the class K(α) of
close-to-convex functions of order α for α = k

2 − 1. For references and survey on
bounded boundary rotation, one may refer to a recent survey written by Noor [20].

Failure to settle the Bieberbach conjecture for about 69 years led to the intro-
duction and investigation of several subclasses of S, the subfamily of A that are
univalent in the open unit disc D (see [2]). In 1932, Spacek [21] proved that if f in
A satisfies the condition Re[(ηzf ′(z))/f(z)] > 0 for all z ∈ D and a fixed complex
number η, then f must be in S. Without loss of generality, we may replace η with
eiλ, |λ| < π/2. Motivated by Spacek [21], Libera [13] in 1967 gave a geometric
characterization of λ−spirallike functions f in A that satisfy the condition

(1.2) Re

(
eiλz

f ′(z)

f(z)

)
> 0, (z ∈ D, |λ| < π

2
).

Denote the class of all such functions that satisfy (1.2) by Hλ. We observe that
H0 = S∗, the family of all starlike functions in D. In 1969, Robertson [29] introduced
and studied the family

Mλ = {f ∈ A : zf ′ ∈ Hλ, z ∈ D}.

A function f in Mλ is called a λ−Robertson or a convex λ−spiral function. In
1991, Ahuja and Silverman [3] surveyed various subclasses of Hλ and Mλ, their
associated properties and open problems.

Motivated by many earlier researchers [5, 6, 8, 11, 15, 16, 24, 27, 28, 29], we
introduce the following:

Definition 1.1. Let Pλk(b) be the class of functions p defined in D that satisfy the
property p(0) = 1 and the condition

(1.3)

∫ 2π

0

∣∣∣∣Re(eiλp(z)− (1− b) cosλ− i sinλ

b

)∣∣∣∣dθ ≤ kπ cosλ,

where k ≥ 2, λ real with |λ| < π
2 , b ∈ C− {0} and z = reiθ.

When λ = 0, k = 2 and b = 1, the class P0
2(1) = P is a well known class of

functions with positive real part in D. In fact, for different values of k, λ and b,
Pλk(b) reduces to important subclasses studied by various researchers. For instance,

(i) P0
2(1− α) = P(α), (0 ≤ α < 1), Robertson [27].

(ii) P0
k(1) = Pk, Pinchuk [26].

(iv) P0
k(1− α) = Pk(α), (0 ≤ α < 1), Padmanabhan [24].

(v) Pλk(1) = Qλk , Moulis [15].
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(vi) Pλk(1− α) = Qλk(α) , (0 ≤ α < 1), Moulis [16].

Definition 1.2. Let Vλk(b) denote the class of functions f in A which satisfy the
condition

1 + z
f ′′(z)

f ′(z)
∈ Pλk(b),

where k, λ and b are given in Definition 1.1. If f ∈ Vλk(b), then f is called λ−
Robertson function of complex order b with bounded boundary rotation.

We remark that the class Vλk(b) generalizes various known and unknown sub-
classes of A. For example, for different values of k, λ and b, we get the classes listed
in the following table:

Subclasses of A Name of a function in the class and References

V0
2(1) = K Convex functions

V0
2(1− α) = K(α) Convex functions of order α, 0 ≤ α < 1, [27]

V0
2(b) = K(b) Convex functions of complex order b, [32]

V0
k(1) = Vk Convex functions with bounded boundary rotation, [22, 23]

V0
k(1− α) = Vk(α) Convex functions of order α with bounded boundary

rotation, 0 ≤ α < 1, [24]

Vλ2 (1) = Mλ λ- Robertson functions, [29]

Vλ2 (1− α) = Mλ(α) λ- Robertson functions of order α, 0 ≤ α < 1, [11]

Vλ2 (b) = Mλ(b) λ- Robertson functions of complex order b, [6]

Vλk(1) = Vλk λ- Robertson functions with bounded boundary rotation, [15]

Vλk(1− α) = Vλk(α) λ- Robertson functions of order α with bounded boundary
rotation, 0 ≤ α < 1, [16].

In view of Definitions 1.1 and 1.2, we immediately get the following.
A function f ∈ Vλk(b) if and only if

(1.4)

∫ 2π

0

∣∣∣∣Re(eiλ
(
1 + z f

′′(z)
f ′(z)

)
− (1− b) cosλ− i sinλ

b

)∣∣∣∣dθ ≤ kπ cosλ.

We next define another subclass of Pλk(b).

Definition 1.3. Let Sλk(b) denote the class of functions f in A which satisfy the
condition

z
f ′(z)

f(z)
∈ Pλk(b),

where k ≥ 2, λ real with |λ| < π
2 , b ∈ C − {0}. If f ∈ Sλk(b), then f is called λ−

spirallike function of complex order b with bounded boundary rotation.

For different values of k, λ and b, the class Sλk(b) gives rise to several known and
unknown subclasses of A. For example, we obtain the following known classes:
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Subclasses of A Name of a function in the class and References

S0
2(1) = S∗ Starlike functions

S0
2(1− α) = S∗(α) Starlike functions of order α, 0 ≤ α < 1, [27]

S0
2(b) = S(b) Starlike functions of complex order b, [17]

S0
k(1− α) = Sk(α) Starlike functions of order α with bounded boundary rotation,

0 ≤ α < 1, [18, 24]

Sλ2 (1) = Hλ λ- Spirallike functions, [21]

Sλ2 (1− α) = Hλ(α) λ- Spirallike functions of order α, 0 ≤ α < 1, [13]

Sλ2 (b) = Sλ(b) λ- Spirallike functions of complex order b, [5]

Sλk(1) = Sλk λ- Spirallike functions with bounded boundary rotation, [19].

Using Definitions 1.1 and 1.3, we immediately obtain the following.
A function f ∈ Sλk(b) if and only if

(1.5)

∫ 2π

0

∣∣∣∣Re(eiλz f
′(z)
f(z) − (1− b) cosλ− i sinλ

b

)∣∣∣∣dθ ≤ kπ cosλ.

Using Definitions 1.2 and 1.3, we obtain the following characterization

(1.6) f ∈ Vλk(b) if and only if zf ′ ∈ Sλk(b).

In view of the relations witnessed in 18 subclasses in the above two tables, we
conclude that the notion of generalized classes Vλk(b) and Sλk(b) unify several known
subclasses of A.

We remark that functions in V0
k(1) have bounded boundary rotation. But, the

functions in the class Vλk(1) with λ 6= 0 may not have bounded boundary rotation.
For properties and counter examples of the classes V0

k(1) and Vλk(1), one may refer
to Loewner [14] and Paatero [22, 23] .

In this paper, we investigate various properties of generalized classes Vλk(b) and
Sλk(b).

2. Properties of Class Vλk(b)

The following result will be helpful in proving representation theorems for the
classes Pλk(b) and Vλk(b).

Lemma 2.1.([22]) A function f ∈ Pk if and only if

p(z) =
1

2

∫ 2π

0

1 + ze−it

1− ze−it
dµ(t),

where µ is a real-valued function of bounded variation on [0, 2π] for which

(2.1)

∫ 2π

0

dµ(t) = 2 and

∫ 2π

0

|dµ(t)| ≤ k

for k ≥ 2.
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Lemma 2.2. If p ∈ Pλk(b), then

(2.2) p(z) = e−iλ
(

cosλ

2

∫ 2π

0

1 + (2b− 1)ze−it

1− ze−it
dµ(t) + i sinλ

)
,

where k ≥ 2, λ real with |λ| < π
2 , b ∈ C − {0} and µ is real-valued function of

bounded variation satisfying the conditions (2.1).

Proof. Letting

f(z) = 1 +
eiλ

b cosλ

(
p(z)− 1

)
=
eiλp(z)− (1− b) cosλ− i sinλ

b cosλ
.

Since p ∈ Pλk(b), it follows from Lemma 2.1, we get

(2.3)
eiλp(z)− (1− b) cosλ− i sinλ

b cosλ
=

1

2

∫ 2π

0

1 + ze−it

1− ze−it
dµ(t).

Equivalently, we obtain

eiλp(z) =
b cosλ

2

∫ 2π

0

1 + ze−it

1− ze−it
dµ(t) + (1− b) cosλ+ i sinλ.

Since
∫ 2π

0
dµ(t) = 2, the last equation is equivalent to

eiλp(z) =
cosλ

2

∫ 2π

0

1 + (2b− 1)ze−it

1− ze−it
dµ(t) + i sinλ,

where µ is a real-valued function of bounded variation on [0, 2π] and satisfies the
conditions (2.1). This proves (2.2). 2

Motivated by several known results (see for instance [7, 16, 24]) and using
Lemma 2.2, we first give the following result for the functions in the family Vλk(b).

Theorem 2.3. A function fλ ∈ Vλk(b) if and only if there exists a function f ∈ Vk
such that

(2.4) f ′λ(z) = [f ′(z)]be
−iλ cosλ,

where k ≥ 2, λ real with |λ| < π
2 and b ∈ C− {0}.

Proof. Since fλ ∈ Vλk(b), there exists p ∈ Pλk(b) such that

1 + z
f ′′λ (z)

f ′λ(z)
= p(z).
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By using (2.3), we can write

eiλ
(

1 + z
f ′′λ (z)
f ′λ(z)

)
− (1− b) cosλ− i sinλ

b cosλ
=

1

2

∫ 2π

0

1 + ze−it

1− ze−it
dµ(t).

Hence

(2.5) eiλ
(

1 + z
f ′′λ (z)

f ′λ(z)

)
=
b cosλ

2

∫ 2π

0

1 + ze−it

1− ze−it
dµ(t) + (1− b) cosλ+ i sinλ.

In view of Lemma 2.1, there exists a real-valued function µ of bounded variation
on [0, 2π] satisfying conditions (2.1) such that

(2.6) 1 + z
f ′′(z)

f ′(z)
=

1

2

∫ 2π

0

1 + ze−it

1− ze−it
dµ(t).

Substituting (2.6) into (2.5), we get

eiλ
(

1 + z
f ′′λ (z)

f ′λ(z)

)
= b cosλ

(
1 + z

f ′′(z)

f ′(z)

)
+ (1− b) cosλ+ i sinλ.

Calculating the above equality, we get

f ′′λ (z)

f ′λ(z)
= be−iλ cosλ

(
1

z
+
f ′′(z)

f ′(z)

)
+

(1− b)e−iλ cosλ

z
+
e−iλi sinλ− 1

z

= be−iλ cosλ
f ′′(z)

f ′(z)
.

Integrating both sides, we obtain

ln f ′λ(z) = be−iλ cosλ ln f ′(z).

This gives (2.4). 2

The following result is a consequence of Theorem 2.3.

Corollary 2.4. fλ ∈ Vλk(b) if and only if there exists a function µ with bounded
variation on [0, 2π] satisfying conditions (2.1) and

(2.7) f ′λ(z) = exp

[
−be−iλ cosλ

∫ 2π

0

log
(
1− ze−it

)
dµ(t)

]
.

Proof. Paatero [23] proved that f ∈ Vk if and only if there exists a function µ of
bounded variation on [0, 2π] such that

f ′(z) = exp

[
−
∫ 2π

0

log
(
1− ze−it

)
dµ(t)

]
,
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with the conditions given in (2.1). In view of Theorem 2.3, we obtain desired
result. 2

Theorem 2.5. If fλ(z) = z + a2z
2 + a3z

3 + ... ∈ Vλk(b), then

(2.8) |a2| ≤
k

2
|b| cosλ.

This bound is sharp for the functions of the form

f ′λ(z) =

[
(1 + z)

k
2−1

(1− z) k2+1

]be−iλ cosλ

.

Proof. Since fλ(z) = z + a2z
2 + a3z

3 + ... ∈ Vλk(b), and by using Theorem 2.3 there
exists a function f(z) = z + b2z

2 + b3z
3 + ... ∈ Vk such that

f ′λ(z) = [f ′(z)]be
−iλ cosλ.

That is,

1 + 2a2z + 3a3z
2 + ... =

[
1 + 2b2z + 3b3z

2 + ...
]be−iλ cosλ

.

Comparing the coefficients of z on both sides, we get

a2 = b2.

In [12], Lehto proved that |b2| ≤ k
2 . Therefore we obtain

|a2| = |b2be−iλ cosλ| ≤ k

2
|b| cosλ. 2

We need the following two lemmas to prove our next theorem.

Lemma 2.6.([28]) Let f ∈ Vk, 2 ≤ k <∞ and |a| < 1. If

(2.9) F (z) =
f
(
z+a
1+az

)
− f(a)

f ′(a)(1− |a|2)

for all z ∈ D, then f ∈ Vk and

(2.10)

∣∣∣∣zf ′′(z)f ′(z)
− 2|z|2

1− |z|2

∣∣∣∣ ≤ k|z|
1− |z|2

.

Lemma 2.7. If fλ ∈ Vλk(b), then the function Fλ defined by

(2.11) F ′λ(z) =
f ′λ
(
z+a
1+az

)
f ′λ(a)(1 + az)2be−iλ cosλ

, Fλ(0) = 0
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also belongs to Vλk(b).

Proof. Let fλ ∈ Vλk(b). By Theorem 2.3, there exists a function f ∈ Vk such that

(2.12) f ′λ(z) = [f ′(z)]be
−iλ cosλ.

Since f ∈ Vk, it follows from Lemma 2.6 that the function F defined by (2.9) is also
in Vk. Again, by using the converse part of Theorem 2.3, there exists a function
Fλ ∈ Vλk(b) such that

F ′λ(z) = [F ′(z)]be
−iλ cosλ.

But, by (2.9) we have

F ′(z) =
f ′
(
z+a
1+az

)
f ′(a)(1 + az)2

,

where |a| < 1. Therefore, we get

F ′λ(z) =
[f ′
(
z+a
1+az

)
]be
−iλ cosλ

[f ′(a)]be−iλ cosλ(1 + az)2be−iλ cosλ

=
f ′λ
(
z+a
1+az

)
f ′λ(a)(1 + az)2be−iλ cosλ

,

which proves the lemma. 2

Theorem 2.8. If fλ ∈ Vλk(b) and k|b| cosλ < 1, then fλ is univalent in D and

(2.13)

∣∣∣∣z f ′′λ (z)

f ′λ(z)
− 2b|z|2e−iλ cosλ

1− |z|2

∣∣∣∣ ≤ k|b||z| cosλ

1− |z|2

for all z ∈ D.
Proof. If fλ ∈ Vλk(b), then F ′λ(z) defined by (2.11) is also in Vλk(b), by Lemma 2.7.
Taking differentiation on both sides of (2.11) and letting z = 0, we get

F ′′λ (0) = (1− |a|2)
f ′′λ (a)

f ′λ(a)
− 2be−iλa cosλ.

Therefore

a2 =
F ′′λ (0)

2!
=

1

2

{
(1− |a|2)

f ′′λ (a)

f ′λ(a)
− 2be−iλa cosλ

}
.

Replacing a by z and using Theorem 2.5, we get

(2.14)

∣∣∣∣(1− |z|2)
f ′′λ (z)

f ′λ(z)
− 2be−iλz cosλ

∣∣∣∣ ≤ k|b| cosλ.

Therefore

(2.15)

∣∣∣∣(1− |z|2)
zf ′′λ (z)

f ′λ(z)
− 2be−iλ|z|2 cosλ

∣∣∣∣ ≤ k|b||z| cosλ, |z| < 1.
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Letting c = 2be−iλ cosλ and by using Ahlfor’s [1] criterion for univalence, it follows
that fλ is univalent in D if k|b| cosλ < 1. Dividing both sides of (2.15) by 1− |z|2,
we get (2.13). 2

Remark 2.9. If f is in V0
k(b), then f is univalent in D whenever |b| < 1/k found

by Umarani [31].

Corollary 2.10. If fλ ∈ Vλk(b), k|b| cosλ < 1 and (2Reb− |b|2) cos2 λ ≤ 1, then fλ
maps

(2.16) |z| ≤ r1 =
2

k|b| cosλ+
√

(k|b| cosλ)2 − 4
(
2Reb cos2 λ− 1

) .
onto a convex domain. This result is sharp.

Proof. For |z| = r < 1, the inequality in (2.13) gives∣∣∣∣(1 +
zf ′′λ (z)

f ′λ(z)

)
− 1− r2 + 2br2e−iλ cosλ

1− r2

∣∣∣∣ ≤ k|b|r cosλ

1− r2
.

Thus, we get

Re

(
1 +

zf ′′λ (z)

f ′λ(z)

)
≥

1− k|b|r cosλ+
(
2Re(be−iλ) cosλ− 1

)
r2

1− r2
.

Right side of this inequality is positive for |z| < r1, where r1 is the positive root of
the equation

1− k|b|r cosλ+
(
2Re(be−iλ) cosλ− 1

)
r2 = 0.

Discriminat of this quadratic equation is

∆ = (k|b| cosλ)2 − 4
(
2Reb cos2 λ− 1

)
≥ 4
(
1− (2Reb− |b|2) cos2 λ

)
≥ 0,

provided (2Reb− |b|2) cos2 λ ≤ 1. Therefore, we obtain radius of convexity as given
in (2.16). Sharp function is

f ′λ(z) =

[
(1 + z)

k
2−1

(1− z) k2+1

]be−iλ cosλ

.

Letting b = 1 in Corollary 2.10, we obtain the following radius of convexity for the
class Vλk defined in [15]. 2

Corollary 2.11. If fλ ∈ Vλk , then fλ is convex for

|z| ≤ r1 =
2

k cosλ+
√

(k cosλ)2 − 4 cos 2λ
.
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Remark 2.12. If we let p = 1 in Corollary 2 in Silvia [30], we observe that Silvia’s
result reduces to the corresponding result given in Corollary 2.11.

3. Properties of Class Sλk(b)

For our result in this section, we need the following principal tool that was
found in 1969 by Brannan [8].

Lemma 3.1 The function f of the form (1.1), belongs to Vk if and only if there
are two functions δ1 and δ2 normalized and starlike in D such that

f ′(z) =
( δ1(z)z )

k
4+

1
2

( δ2(z)z )
k
4−

1
2

.

Theorem 3.2. If a function fλ of the form (1.1) belongs to Vλk(b), then there exist
two normalized λ−spirallike functions T1, T2 in D such that

(3.1) f ′λ(z) =

{
(T1(z)

z )
k
4+

1
2

(T2(z)
z )

k
4−

1
2

}b
.

Proof. In view of Lemma 3.1, f ∈ Vk if and only if

f ′(z) =
( δ1(z)z )

k
4+

1
2

( δ2(z)z )
k
4−

1
2

,

where δ1, δ2 are normalized starlike functions in D. If fλ ∈ Vλk(b), then due to
Theorem 2.3 we can write

(3.2) f ′λ(z) =

{
( δ1(z)z )

k
4+

1
2

( δ2(z)z )
k
4−

1
2

}be−iλ cosλ

.

It is well-known that if δ is a starlike function in D, then T (z) = z[δ(z)/z]e
−iλ cosλ is

λ−spirallike function (see [7]). Now using this representation, we get desired result
follows from (3.2). 2

Remark 3.3. If we let b = 1 − α, there exist λ−spirallike functions T1, T2 in D
such that

f ′λ(z) =

{
(T1(z)

z )
k
4+

1
2

(T2(z)
z )

k
4−

1
2

}1−α

,

which was obtained by Moulis [16].

Using (1.6) and Corollary 2.4, we also obtain the following representation the-
orem for Sλk(b).
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Corollary 3.4. A function fλ ∈ Sλk(b) if and only if there exists a function µ with
bounded variation on [0, 2π] satisfying conditions in (2.1) such that

(3.3) fλ(z) = z exp

[
−be−iλ cosλ

∫ 2π

0

log
(
1− ze−it

)
dµ(t)

]
.

4. Integral Operators

In [9], Breaz and Breaz; in [10], Breaz et al. studied the following integral
operators

(4.1) Fn(z) =

∫ z

0

(
f1(t)

t

)γ1
...

(
fn(t)

t

)γn
dt,

(4.2) Gn(z) =

∫ z

0

(f ′1(t))γ1 ...(f ′n(t))γndt,

for γj > 0, 1 ≤ j ≤ n and
∑n
j=1 γj ≤ n + 1. They studied starlikeness and

convexity of the operators (4.1) and (4.2). In this section, we investigate these
integral operators (4.1) and (4.2) for the classes Sλk(b) and Vλk(b).

Theorem 4.1. Let fj ∈ Sλk(b) for 1 ≤ j ≤ n with k ≥ 2, b ∈ C−{0}. Also, let λ be
a real number with |λ| < π

2 , γj > 0 (1 ≤ j ≤ n). Then Fn ∈ Vλk(µ) for each positive
integer n, where µ = b

∑n
j=1 γj.

Proof. Since fj(z) = z +
∑∞
n=2 an,jz

n, we have
fj(z)
z 6= 0 for all z ∈ D. Therefore

by (4.1), we have

F ′′n (z)

F ′n(z)
=

n∑
j=1

γj

(
f ′j(z)

fj(z)
− 1

z

)
,

or equivalently

eiλ
(

1 + z
F ′′n (z)

F ′n(z)

)
= eiλ +

n∑
j=1

γje
iλ
zf ′j(z)

fj(z)
−

n∑
j=1

γje
iλ

= eiλ + (1− b) cosλ

n∑
j=1

γj +

n∑
j=1

γj

(
eiλ

zf ′j(z)

fj(z)
− (1− b) cosλ

)
−

n∑
j=1

γje
iλ.

Taking real part on both sides, we get
(4.3)

Re

(
eiλ
(
1+z

F ′′n (z)

F ′n(z)

)
−(1−b

n∑
j=1

γj) cosλ−i sinλ
)

=

n∑
j=1

γjRe

(
eiλ

zf ′j(z)

fj(z)
−(1−b) cosλ−i sinλ

)
.
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On the other hand, since fj ∈ Sλk(b) for 1 ≤ j ≤ n and by using (1.5), we have

(4.4)

∫ 2π

0

∣∣∣∣Re(eiλ
zf ′j(z)

fj(z)
− (1− b) cosλ− i sinλ

b

)∣∣∣∣dθ ≤ kπ cosλ.

On letting µ = b
∑n
j=1 γj , (1.4), (4.3) and (4.4) yield

∫ 2π

0

∣∣∣∣Re(eiλ
(
1 + z

F ′′n (z)
F ′n(z)

)
− (1− b

∑n
j=1 γj) cosλ− i sinλ

b

)∣∣∣∣dθ
≤

n∑
j=1

γj

∫ 2π

0

∣∣∣∣Re(eiλ
zf ′j(z)

fj(z)
− (1− b) cosλ− i sinλ

b

)∣∣∣∣dθ ≤ kπ cosλ.

Then from above inequality, we obtain

∫ 2π

0

∣∣∣∣Re(eiλ
(
1 + z

F ′′n (z)
F ′n(z)

)
− (1− µ) cosλ− i sinλ

µ

)∣∣∣∣dθ ≤ kπ cosλ.

In view of (1.4), it follows that Fn ∈ Vλk(µ) for each positive integer n. 2

We deduce the following known result from Theorem 4.1. We observed in Sec-
tion 1 that S0k(1 − α) = Sk(α) and V0

k(1 − α) = Vk(α) for 0 ≤ α < 1 and k ≥ 2.
By letting λ = 0 and b = 1− α, Theorem 4.1 gives the following result obtained in
[18].

Corollary 4.2. Let fj ∈ Sk(α) for 1 ≤ j ≤ n with 0 ≤ α < 1 and k ≥ 2. Also, let
γj > 0 (1 ≤ j ≤ n).If

0 ≤ 1 + (α− 1)

n∑
j=1

γj < 1,

then Fn ∈ Vk(β) with β = 1 + (α− 1)
∑n
j=1 γj.

Remark 4.3. For n = 1 and γ1 = 1, Theorem 4.1 proves that if f1 ∈ Sλk(b) with
k ≥ 2, then the integral operator

F1(z) =

∫ z

0

f1(z)

z
dz ∈ Vλk(b).

In particular, for n = 1, γ1 = 1, λ = 0, b = 1 and k = 2, Theorem 4.1 proves

that if f1 ∈ S∗, then
∫ z
0
f1(z)
z dz ∈ K. This is the famous result found by Alexander

[4].

Theorem 4.4. Let fj ∈ Vλk(b) for 1 ≤ j ≤ n with k ≥ 2, b ∈ C − {0}. Also, let
λ be a real number with |λ| < π

2 , γj > 0 (1 ≤ j ≤ n). Then the integral operator
Gn ∈ Vλk(µ) for each positive integer n, where µ = b

∑n
j=1 γj.
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Proof. In view of (4.2), we have

G′′n(z)

G′n(z)
= γ1

f ′′1 (z)

f ′1(z)
+ ...+ γn

f ′′n (z)

f ′n(z)
,

or equivalently

eiλ
(

1 + z
G′′n(z)

G′n(z)

)
= eiλ +

n∑
j=1

γje
iλ

(
1 +

zf ′′j (z)

f ′j(z)

)
−

n∑
j=1

γje
iλ.

Subtracting and adding (1−b) cosλ
∑n
j=1 γj on the right hand side, taking real part

on both sides, and simplifying, we get

Re

(
eiλ
(
1 + z

G′′n(z)

G′n(z)

)
− (1− b

n∑
j=1

γj) cosλ− i sinλ

)
(4.5)

=

n∑
j=1

γjRe

(
eiλ
(

1 +
zf ′′j (z)

f ′j(z)

)
− (1− b) cosλ− i sinλ

)
.

Since fj ∈ Vλk(b) for 1 ≤ j ≤ n and by using (1.4), we obtain

(4.6)

∫ 2π

0

∣∣∣∣Re(e
iλ

(
1 +

zf ′′j (z)

f ′j(z)

)
− (1− b) cosλ− i sinλ

b

)∣∣∣∣dθ ≤ kπ cosλ.

Therefore letting µ = b
∑n
j=1 γj , (1.4), (4.5) and (4.6) give

∫ 2π

0

∣∣∣∣Re(e
iλ

(
1 + z

G′′n(z)
G′n(z)

)
− (1− µ) cosλ− i sinλ

µ

)∣∣∣∣dθ ≤ kπ cosλ.

It now follows from (1.4) that Gn ∈ Vλk(µ) for each positive integer n. 2

Remark 4.5. For n = 1 and γ1 = 1, Theorem 4.4 proves that f1 ∈ Vλk(b) with
k ≥ 2, then the integral operator

F1(z) =

∫ z

0

f ′1(z)dz ∈ Vλk(b).
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