KYUNGPOOK Math. J. 59(2019), 277-291 https://doi.org/10.5666/KMJ.2019.59.2.277 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Spirallike and Robertson Functions of Complex Order with Bounded Boundary Rotations

Om Ahuja

Department of Mathematical Sciences, Kent State University, Ohio, 44021, U.S.A e-mail: oahuja@kent.edu

ASENA ÇETINKAYA* Department of Mathematics and Computer Sciences, İstanbul Kültür University, İstanbul, Turkey e-mail: asnfigen@hotmail.com

YASEMIN KAHRAMANER Department of Mathematics, İstanbul Ticaret University, İstanbul, Turkey e-mail: ykahra@gmail.com

ABSTRACT. Using the concept of bounded boundary rotation, we investigate various properties of two new generalized classes of spirallike and Robertson functions of complex order with bounded boundary rotations.

1. Introduction

Let \mathbb{D} be the unit disc $\{z : |z| < 1\}$ and suppose \mathcal{A} is the class of functions analytic in \mathbb{D} satisfying the conditions f(0) = 0 and f'(0) = 1. Then each function f in \mathcal{A} has the Taylor expression

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

because of the conditions f(0) = f'(0) - 1 = 0.

Let \mathcal{V}_k denote the family of functions f in \mathcal{A} that map the unit disc \mathbb{D} conformally onto an image domain $f(\mathbb{D})$ of bounded boundary rotation at most $k\pi$.

^{*} Corresponding Author.

Received February 10, 2018; revised April 2, 2019; accepted April 23, 2019.

²⁰¹⁰ Mathematics Subject Classification: 30C45, 30C50.

Key words and phrases: bounded boundary rotation, λ -spirallike function, λ -Robertson function, integral operator.

The concept of functions of bounded boundary rotation was initiated by Loewner [14] in 1917. However, it was Paatero [22, 23] who systematically studied the class \mathcal{V}_k . In Pinchuk [25], it is proved that the functions in \mathcal{V}_k are close-to-convex in \mathbb{D} if $2 \leq k \leq 4$. Brannan in [8] showed that \mathcal{V}_k is a subclass of the class $\mathcal{K}(\alpha)$ of close-to-convex functions of order α for $\alpha = \frac{k}{2} - 1$. For references and survey on bounded boundary rotation, one may refer to a recent survey written by Noor [20].

Failure to settle the Bieberbach conjecture for about 69 years led to the introduction and investigation of several subclasses of \mathcal{S} , the subfamily of \mathcal{A} that are univalent in the open unit disc \mathbb{D} (see [2]). In 1932, Spacek [21] proved that if f in \mathcal{A} satisfies the condition $Re[(\eta z f'(z))/f(z)] > 0$ for all $z \in \mathbb{D}$ and a fixed complex number η , then f must be in \mathcal{S} . Without loss of generality, we may replace η with $e^{i\lambda}$, $|\lambda| < \pi/2$. Motivated by Spacek [21], Libera [13] in 1967 gave a geometric characterization of λ -spirallike functions f in \mathcal{A} that satisfy the condition

(1.2)
$$Re\left(e^{i\lambda}z\frac{f'(z)}{f(z)}\right) > 0, \quad (z \in \mathbb{D}, |\lambda| < \frac{\pi}{2}).$$

Denote the class of all such functions that satisfy (1.2) by \mathcal{H}^{λ} . We observe that $\mathcal{H}^0 = S^*$, the family of all starlike functions in \mathbb{D} . In 1969, Robertson [29] introduced and studied the family

$$\mathcal{M}^{\lambda} = \{ f \in \mathcal{A} : zf' \in \mathcal{H}^{\lambda}, z \in \mathbb{D} \}.$$

A function f in \mathcal{M}^{λ} is called a λ -Robertson or a convex λ -spiral function. In 1991, Ahuja and Silverman [3] surveyed various subclasses of \mathcal{H}^{λ} and \mathcal{M}^{λ} , their associated properties and open problems.

Motivated by many earlier researchers [5, 6, 8, 11, 15, 16, 24, 27, 28, 29], we introduce the following:

Definition 1.1. Let $\mathcal{P}_k^{\lambda}(b)$ be the class of functions p defined in \mathbb{D} that satisfy the property p(0) = 1 and the condition

(1.3)
$$\int_{0}^{2\pi} \left| Re\left(\frac{e^{i\lambda}p(z) - (1-b)\cos\lambda - i\sin\lambda}{b}\right) \right| d\theta \le k\pi\cos\lambda,$$

where $k \ge 2$, λ real with $|\lambda| < \frac{\pi}{2}$, $b \in \mathbb{C} - \{0\}$ and $z = re^{i\theta}$.

When $\lambda = 0$, k = 2 and b = 1, the class $\mathcal{P}_2^0(1) = \mathcal{P}$ is a well known class of functions with positive real part in \mathbb{D} . In fact, for different values of k, λ and $b, \mathcal{P}_k^{\lambda}(b)$ reduces to important subclasses studied by various researchers. For instance,

- (i) $\mathcal{P}_2^0(1-\alpha) = \mathcal{P}(\alpha), \ (0 \le \alpha < 1), \text{ Robertson } [27].$
- (ii) $\mathcal{P}_k^0(1) = \mathcal{P}_k$, Pinchuk [26].
- (iv) $\mathcal{P}_k^0(1-\alpha) = \mathcal{P}_k(\alpha), (0 \le \alpha < 1)$, Padmanabhan [24].
- (v) $\mathcal{P}_k^{\lambda}(1) = Q_k^{\lambda}$, Moulis [15].

(vi) $\mathcal{P}_k^{\lambda}(1-\alpha) = Q_k^{\lambda}(\alpha)$, $(0 \le \alpha < 1)$, Moulis [16].

Definition 1.2. Let $\mathcal{V}_k^{\lambda}(b)$ denote the class of functions f in \mathcal{A} which satisfy the condition

$$1 + z \frac{f''(z)}{f'(z)} \in \mathcal{P}_k^{\lambda}(b),$$

where k, λ and b are given in Definition 1.1. If $f \in \mathcal{V}_k^{\lambda}(b)$, then f is called λ -Robertson function of complex order b with bounded boundary rotation.

We remark that the class $\mathcal{V}_k^{\lambda}(b)$ generalizes various known and unknown subclasses of \mathcal{A} . For example, for different values of k, λ and b, we get the classes listed in the following table:

Subclasses of \mathcal{A}	Name of a function in the class and References
$\mathcal{V}_2^0(1) = \mathcal{K}$	Convex functions
$\mathcal{V}_2^0(1-\alpha) = \mathcal{K}(\alpha)$	Convex functions of order α , $0 \le \alpha < 1$, [27]
$\mathcal{V}_2^0(b) = \mathcal{K}(b)$	Convex functions of complex order b, [32]
$\mathcal{V}_k^0(1) = \mathcal{V}_k$	Convex functions with bounded boundary rotation, [22, 23]
$\mathcal{V}_k^0(1-\alpha) = \mathcal{V}_k(\alpha)$	Convex functions of order α with bounded boundary
	rotation, $0 \le \alpha < 1$, [24]
$\mathcal{V}_2^{\lambda}(1) = \mathcal{M}^{\lambda}$	λ - Robertson functions, [29]
$\mathcal{V}_2^\lambda(1-\alpha) = \mathcal{M}^\lambda(\alpha)$	λ - Robertson functions of order α , $0 \leq \alpha < 1$, [11]
$\mathcal{V}_2^\lambda(b) = \mathcal{M}^\lambda(b)$	λ - Robertson functions of complex order b, [6]
$\mathcal{V}_k^{\lambda}(1) = \mathcal{V}_k^{\lambda}$	λ - Robertson functions with bounded boundary rotation, [15]
$\mathcal{V}_k^\lambda(1-\alpha) = \mathcal{V}_k^\lambda(\alpha)$	λ - Robertson functions of order α with bounded boundary
	rotation, $0 \le \alpha < 1$, [16].

In view of Definitions 1.1 and 1.2, we immediately get the following. A function $f \in \mathcal{V}_k^{\lambda}(b)$ if and only if

(1.4)
$$\int_{0}^{2\pi} \left| Re\left(\frac{e^{i\lambda}\left(1+z\frac{f''(z)}{f'(z)}\right)-(1-b)\cos\lambda-i\sin\lambda}{b}\right) \right| d\theta \le k\pi\cos\lambda.$$

We next define another subclass of $\mathcal{P}_k^{\lambda}(b)$.

Definition 1.3. Let $S_k^{\lambda}(b)$ denote the class of functions f in \mathcal{A} which satisfy the condition

$$z\frac{f'(z)}{f(z)} \in \mathcal{P}_k^\lambda(b),$$

where $k \geq 2$, λ real with $|\lambda| < \frac{\pi}{2}$, $b \in \mathbb{C} - \{0\}$. If $f \in S_k^{\lambda}(b)$, then f is called λ -spirallike function of complex order b with bounded boundary rotation.

For different values of k, λ and b, the class $S_k^{\lambda}(b)$ gives rise to several known and unknown subclasses of \mathcal{A} . For example, we obtain the following known classes:

Subclasses of A	Name of a function in the class and References
$S_2^0(1) = S^*$	Starlike functions
$\mathcal{S}_2^0(1-\alpha) = \mathcal{S}^*(\alpha)$	Starlike functions of order α , $0 \leq \alpha < 1$, [27]
$\mathcal{S}_2^0(b) = \mathcal{S}(b)$	Starlike functions of complex order b, [17]
$\mathcal{S}_k^0(1-\alpha) = \mathcal{S}_k(\alpha)$	Starlike functions of order α with bounded boundary rotation,
	$0 \le \alpha < 1, [18, 24]$
$\mathcal{S}_2^\lambda(1) = \mathcal{H}^\lambda$	λ - Spirallike functions, [21]
$\mathcal{S}_2^\lambda(1-\alpha) = \mathcal{H}^\lambda(\alpha)$	λ - Spirallike functions of order α , $0 \leq \alpha < 1$, [13]
$\mathcal{S}_2^\lambda(b) = \mathcal{S}^\lambda(b)$	λ - Spirallike functions of complex order b, [5]
$S_k^{\lambda}(1) = S_k^{\lambda}$	λ - Spirallike functions with bounded boundary rotation, [19].

Using Definitions 1.1 and 1.3, we immediately obtain the following. A function $f \in S_k^{\lambda}(b)$ if and only if

(1.5)
$$\int_{0}^{2\pi} \left| Re\left(\frac{e^{i\lambda}z\frac{f'(z)}{f(z)} - (1-b)\cos\lambda - i\sin\lambda}{b}\right) \right| d\theta \le k\pi\cos\lambda$$

Using Definitions 1.2 and 1.3, we obtain the following characterization

(1.6)
$$f \in \mathcal{V}_k^{\lambda}(b)$$
 if and only if $zf' \in \mathcal{S}_k^{\lambda}(b)$.

In view of the relations witnessed in 18 subclasses in the above two tables, we conclude that the notion of generalized classes $\mathcal{V}_k^{\lambda}(b)$ and $\mathcal{S}_k^{\lambda}(b)$ unify several known subclasses of \mathcal{A} .

We remark that functions in $\mathcal{V}_k^0(1)$ have bounded boundary rotation. But, the functions in the class $\mathcal{V}_k^\lambda(1)$ with $\lambda \neq 0$ may not have bounded boundary rotation. For properties and counter examples of the classes $\mathcal{V}_k^0(1)$ and $\mathcal{V}_k^\lambda(1)$, one may refer to Loewner [14] and Paatero [22, 23].

In this paper, we investigate various properties of generalized classes $\mathcal{V}_k^{\lambda}(b)$ and $S_k^{\lambda}(b)$.

2. Properties of Class $\mathcal{V}_k^{\lambda}(b)$

The following result will be helpful in proving representation theorems for the classes $\mathcal{P}_k^{\lambda}(b)$ and $\mathcal{V}_k^{\lambda}(b)$.

Lemma 2.1.([22]) A function $f \in \mathfrak{P}_k$ if and only if

$$p(z) = \frac{1}{2} \int_0^{2\pi} \frac{1 + ze^{-it}}{1 - ze^{-it}} d\mu(t),$$

where μ is a real-valued function of bounded variation on $[0, 2\pi]$ for which

(2.1)
$$\int_{0}^{2\pi} d\mu(t) = 2 \quad and \quad \int_{0}^{2\pi} |d\mu(t)| \le k$$

for $k \geq 2$.

Lemma 2.2. If $p \in \mathcal{P}_k^{\lambda}(b)$, then

(2.2)
$$p(z) = e^{-i\lambda} \left(\frac{\cos \lambda}{2} \int_0^{2\pi} \frac{1 + (2b - 1)ze^{-it}}{1 - ze^{-it}} d\mu(t) + i\sin \lambda \right),$$

where $k \geq 2$, λ real with $|\lambda| < \frac{\pi}{2}$, $b \in \mathbb{C} - \{0\}$ and μ is real-valued function of bounded variation satisfying the conditions (2.1).

Proof. Letting

$$f(z) = 1 + \frac{e^{i\lambda}}{b\cos\lambda} (p(z) - 1)$$
$$= \frac{e^{i\lambda}p(z) - (1 - b)\cos\lambda - i\sin\lambda}{b\cos\lambda}.$$

Since $p \in \mathcal{P}_k^{\lambda}(b)$, it follows from Lemma 2.1, we get

(2.3)
$$\frac{e^{i\lambda}p(z) - (1-b)\cos\lambda - i\sin\lambda}{b\cos\lambda} = \frac{1}{2}\int_0^{2\pi} \frac{1+ze^{-it}}{1-ze^{-it}}d\mu(t).$$

Equivalently, we obtain

$$e^{i\lambda}p(z) = \frac{b\cos\lambda}{2} \int_0^{2\pi} \frac{1+ze^{-it}}{1-ze^{-it}} d\mu(t) + (1-b)\cos\lambda + i\sin\lambda.$$

Since $\int_{0}^{2\pi} d\mu(t) = 2,$ the last equation is equivalent to

$$e^{i\lambda}p(z) = \frac{\cos\lambda}{2} \int_0^{2\pi} \frac{1 + (2b-1)ze^{-it}}{1 - ze^{-it}} d\mu(t) + i\sin\lambda,$$

where μ is a real-valued function of bounded variation on $[0, 2\pi]$ and satisfies the conditions (2.1). This proves (2.2).

Motivated by several known results (see for instance [7, 16, 24]) and using Lemma 2.2, we first give the following result for the functions in the family $\mathcal{V}_{k}^{\lambda}(b)$.

Theorem 2.3. A function $f_{\lambda} \in \mathcal{V}_{k}^{\lambda}(b)$ if and only if there exists a function $f \in \mathcal{V}_{k}$ such that

(2.4)
$$f'_{\lambda}(z) = [f'(z)]^{be^{-i\lambda}\cos\lambda},$$

where $k \geq 2$, λ real with $|\lambda| < \frac{\pi}{2}$ and $b \in \mathbb{C} - \{0\}$. Proof. Since $f_{\lambda} \in \mathcal{V}_{k}^{\lambda}(b)$, there exists $p \in \mathcal{P}_{k}^{\lambda}(b)$ such that

$$1 + z \frac{f_{\lambda}''(z)}{f_{\lambda}'(z)} = p(z).$$

By using (2.3), we can write

$$\frac{e^{i\lambda}\left(1+z\frac{f_{\lambda}^{\prime\prime}(z)}{f_{\lambda}^{\prime}(z)}\right)-(1-b)\cos\lambda-i\sin\lambda}{b\cos\lambda}=\frac{1}{2}\int_{0}^{2\pi}\frac{1+ze^{-it}}{1-ze^{-it}}d\mu(t).$$

Hence

(2.5)
$$e^{i\lambda} \left(1 + z \frac{f_{\lambda}''(z)}{f_{\lambda}'(z)} \right) = \frac{b \cos \lambda}{2} \int_0^{2\pi} \frac{1 + z e^{-it}}{1 - z e^{-it}} d\mu(t) + (1 - b) \cos \lambda + i \sin \lambda.$$

In view of Lemma 2.1, there exists a real-valued function μ of bounded variation on $[0, 2\pi]$ satisfying conditions (2.1) such that

(2.6)
$$1 + z \frac{f''(z)}{f'(z)} = \frac{1}{2} \int_0^{2\pi} \frac{1 + z e^{-it}}{1 - z e^{-it}} d\mu(t).$$

Substituting (2.6) into (2.5), we get

$$e^{i\lambda}\left(1+z\frac{f_{\lambda}''(z)}{f_{\lambda}'(z)}\right) = b\cos\lambda\left(1+z\frac{f''(z)}{f'(z)}\right) + (1-b)\cos\lambda + i\sin\lambda.$$

Calculating the above equality, we get

$$\begin{aligned} \frac{f_{\lambda}''(z)}{f_{\lambda}'(z)} &= be^{-i\lambda}\cos\lambda\left(\frac{1}{z} + \frac{f''(z)}{f'(z)}\right) + \frac{(1-b)e^{-i\lambda}\cos\lambda}{z} + \frac{e^{-i\lambda}i\sin\lambda - 1}{z} \\ &= be^{-i\lambda}\cos\lambda\frac{f''(z)}{f'(z)}. \end{aligned}$$

Integrating both sides, we obtain

$$\ln f_{\lambda}'(z) = b e^{-i\lambda} \cos \lambda \ln f'(z).$$

This gives (2.4).

The following result is a consequence of Theorem 2.3.

Corollary 2.4. $f_{\lambda} \in \mathcal{V}_{k}^{\lambda}(b)$ if and only if there exists a function μ with bounded variation on $[0, 2\pi]$ satisfying conditions (2.1) and

(2.7)
$$f_{\lambda}'(z) = \exp\left[-be^{-i\lambda}\cos\lambda\int_{0}^{2\pi}\log\left(1-ze^{-it}\right)d\mu(t)\right].$$

Proof. Paatero [23] proved that $f \in \mathcal{V}_k$ if and only if there exists a function μ of bounded variation on $[0, 2\pi]$ such that

$$f'(z) = \exp\left[-\int_0^{2\pi} \log(1 - ze^{-it}) d\mu(t)\right],$$

282

with the conditions given in (2.1). In view of Theorem 2.3, we obtain desired result. $\hfill \Box$

Theorem 2.5. If $f_{\lambda}(z) = z + a_2 z^2 + a_3 z^3 + ... \in \mathcal{V}_k^{\lambda}(b)$, then

$$(2.8) |a_2| \le \frac{k}{2} |b| \cos \lambda$$

This bound is sharp for the functions of the form

$$f_{\lambda}'(z) = \left[\frac{(1+z)^{\frac{k}{2}-1}}{(1-z)^{\frac{k}{2}+1}}\right]^{be^{-i\lambda}\cos\lambda}.$$

Proof. Since $f_{\lambda}(z) = z + a_2 z^2 + a_3 z^3 + \ldots \in \mathcal{V}_k^{\lambda}(b)$, and by using Theorem 2.3 there exists a function $f(z) = z + b_2 z^2 + b_3 z^3 + \ldots \in \mathcal{V}_k$ such that

$$f'_{\lambda}(z) = [f'(z)]^{be^{-i\lambda}\cos\lambda}.$$

That is,

$$1 + 2a_2z + 3a_3z^2 + \dots = \left[1 + 2b_2z + 3b_3z^2 + \dots\right]^{be^{-i\lambda}\cos\lambda}.$$

Comparing the coefficients of z on both sides, we get

$$a_2 = b_2.$$

In [12], Lehto proved that $|b_2| \leq \frac{k}{2}$. Therefore we obtain

$$|a_2| = |b_2 b e^{-i\lambda} \cos \lambda| \le \frac{k}{2} |b| \cos \lambda.$$

We need the following two lemmas to prove our next theorem.

Lemma 2.6.([28]) Let $f \in V_k$, $2 \le k < \infty$ and |a| < 1. If

(2.9)
$$F(z) = \frac{f(\frac{z+a}{1+\overline{a}z}) - f(a)}{f'(a)(1-|a|^2)}$$

for all $z \in \mathbb{D}$, then $f \in \mathcal{V}_k$ and

(2.10)
$$\left|\frac{zf''(z)}{f'(z)} - \frac{2|z|^2}{1-|z|^2}\right| \le \frac{k|z|}{1-|z|^2}.$$

Lemma 2.7. If $f_{\lambda} \in \mathcal{V}_{k}^{\lambda}(b)$, then the function F_{λ} defined by

(2.11)
$$F'_{\lambda}(z) = \frac{f'_{\lambda}\left(\frac{z+a}{1+\overline{a}z}\right)}{f'_{\lambda}(a)(1+\overline{a}z)^{2be^{-i\lambda}\cos\lambda}}, \quad F_{\lambda}(0) = 0$$

also belongs to $\mathcal{V}_k^{\lambda}(b)$.

Proof. Let $f_{\lambda} \in \mathcal{V}_{k}^{\lambda}(b)$. By Theorem 2.3, there exists a function $f \in \mathcal{V}_{k}$ such that

(2.12)
$$f'_{\lambda}(z) = [f'(z)]^{be^{-i\lambda} \cos \lambda}$$

Since $f \in \mathcal{V}_k$, it follows from Lemma 2.6 that the function F defined by (2.9) is also in \mathcal{V}_k . Again, by using the converse part of Theorem 2.3, there exists a function $F_{\lambda} \in \mathcal{V}_k^{\lambda}(b)$ such that

$$F'_{\lambda}(z) = [F'(z)]^{be^{-i\lambda}\cos\lambda}.$$

But, by (2.9) we have

$$F'(z) = \frac{f'\left(\frac{z+a}{1+\overline{a}z}\right)}{f'(a)(1+\overline{a}z)^2},$$

where |a| < 1. Therefore, we get

$$F_{\lambda}'(z) = \frac{\left[f'\left(\frac{z+a}{1+\overline{a}z}\right)\right]^{be^{-i\lambda}\cos\lambda}}{\left[f'(a)\right]^{be^{-i\lambda}\cos\lambda}(1+\overline{a}z)^{2be^{-i\lambda}\cos\lambda}}$$
$$= \frac{f_{\lambda}'\left(\frac{z+a}{1+\overline{a}z}\right)}{f_{\lambda}'(a)(1+\overline{a}z)^{2be^{-i\lambda}\cos\lambda}},$$

which proves the lemma.

Theorem 2.8. If $f_{\lambda} \in \mathcal{V}_{k}^{\lambda}(b)$ and $k|b| \cos \lambda < 1$, then f_{λ} is univalent in \mathbb{D} and

(2.13)
$$\left| z \frac{f_{\lambda}''(z)}{f_{\lambda}'(z)} - \frac{2b|z|^2 e^{-i\lambda} \cos \lambda}{1 - |z|^2} \right| \le \frac{k|b||z| \cos \lambda}{1 - |z|^2}$$

for all $z \in \mathbb{D}$.

Proof. If $f_{\lambda} \in \mathcal{V}_{k}^{\lambda}(b)$, then $F_{\lambda}'(z)$ defined by (2.11) is also in $\mathcal{V}_{k}^{\lambda}(b)$, by Lemma 2.7. Taking differentiation on both sides of (2.11) and letting z = 0, we get

$$F_{\lambda}^{\prime\prime}(0) = (1 - |a|^2) \frac{f_{\lambda}^{\prime\prime}(a)}{f_{\lambda}^{\prime}(a)} - 2be^{-i\lambda}\overline{a}\cos\lambda.$$

Therefore

$$a_{2} = \frac{F_{\lambda}''(0)}{2!} = \frac{1}{2} \bigg\{ (1 - |a|^{2}) \frac{f_{\lambda}''(a)}{f_{\lambda}'(a)} - 2be^{-i\lambda} \overline{a} \cos \lambda \bigg\}.$$

Replacing a by z and using Theorem 2.5, we get

(2.14)
$$\left| (1-|z|^2) \frac{f_{\lambda}''(z)}{f_{\lambda}'(z)} - 2be^{-i\lambda} \overline{z} \cos \lambda \right| \le k|b| \cos \lambda.$$

Therefore

(2.15)
$$\left| (1-|z|^2) \frac{z f_{\lambda}''(z)}{f_{\lambda}'(z)} - 2b e^{-i\lambda} |z|^2 \cos \lambda \right| \le k|b||z| \cos \lambda, \quad |z| < 1.$$

Letting $c = 2be^{-i\lambda} \cos \lambda$ and by using Ahlfor's [1] criterion for univalence, it follows that f_{λ} is univalent in \mathbb{D} if $k|b| \cos \lambda < 1$. Dividing both sides of (2.15) by $1 - |z|^2$, we get (2.13).

Remark 2.9. If f is in $\mathcal{V}_k^0(b)$, then f is univalent in \mathbb{D} whenever |b| < 1/k found by Umarani [31].

Corollary 2.10. If $f_{\lambda} \in \mathcal{V}_{k}^{\lambda}(b)$, $k|b| \cos \lambda < 1$ and $(2Reb - |b|^{2}) \cos^{2} \lambda \leq 1$, then f_{λ} maps

(2.16)
$$|z| \le r_1 = \frac{2}{k|b|\cos\lambda + \sqrt{(k|b|\cos\lambda)^2 - 4(2Reb\cos^2\lambda - 1)}}$$

onto a convex domain. This result is sharp.

Proof. For |z| = r < 1, the inequality in (2.13) gives

$$\left| \left(1 + \frac{z f_{\lambda}''(z)}{f_{\lambda}'(z)} \right) - \frac{1 - r^2 + 2br^2 e^{-i\lambda} \cos \lambda}{1 - r^2} \right| \le \frac{k|b|r \cos \lambda}{1 - r^2}.$$

Thus, we get

$$Re\left(1+\frac{zf_{\lambda}''(z)}{f_{\lambda}'(z)}\right) \geq \frac{1-k|b|r\cos\lambda + \left(2Re(be^{-i\lambda})\cos\lambda - 1\right)r^2}{1-r^2}.$$

Right side of this inequality is positive for $|z| < r_1$, where r_1 is the positive root of the equation

$$1 - k|b|r\cos\lambda + (2Re(be^{-i\lambda})\cos\lambda - 1)r^2 = 0.$$

Discriminat of this quadratic equation is

$$\Delta = (k|b|\cos\lambda)^2 - 4\left(2Reb\cos^2\lambda - 1\right) \ge 4\left(1 - (2Reb - |b|^2)\cos^2\lambda\right) \ge 0,$$

provided $(2Reb - |b|^2) \cos^2 \lambda \le 1$. Therefore, we obtain radius of convexity as given in (2.16). Sharp function is

$$f_{\lambda}'(z) = \left[\frac{(1+z)^{\frac{k}{2}-1}}{(1-z)^{\frac{k}{2}+1}}\right]^{be^{-i\lambda}\cos\lambda}.$$

Letting b = 1 in Corollary 2.10, we obtain the following radius of convexity for the class \mathcal{V}_k^{λ} defined in [15].

Corollary 2.11. If $f_{\lambda} \in \mathcal{V}_{k}^{\lambda}$, then f_{λ} is convex for

$$|z| \le r_1 = \frac{2}{k\cos\lambda + \sqrt{(k\cos\lambda)^2 - 4\cos2\lambda}}$$

Remark 2.12. If we let p = 1 in Corollary 2 in Silvia [30], we observe that Silvia's result reduces to the corresponding result given in Corollary 2.11.

3. Properties of Class $S_k^{\lambda}(b)$

For our result in this section, we need the following principal tool that was found in 1969 by Brannan [8].

Lemma 3.1 The function f of the form (1.1), belongs to \mathcal{V}_k if and only if there are two functions δ_1 and δ_2 normalized and starlike in \mathbb{D} such that

$$f'(z) = \frac{\left(\frac{\delta_1(z)}{z}\right)^{\frac{k}{4} + \frac{1}{2}}}{\left(\frac{\delta_2(z)}{z}\right)^{\frac{k}{4} - \frac{1}{2}}}.$$

Theorem 3.2. If a function f_{λ} of the form (1.1) belongs to $\mathcal{V}_{k}^{\lambda}(b)$, then there exist two normalized λ -spirallike functions T_{1}, T_{2} in \mathbb{D} such that

(3.1)
$$f_{\lambda}'(z) = \left\{ \frac{\left(\frac{T_1(z)}{z}\right)^{\frac{k}{4} + \frac{1}{2}}}{\left(\frac{T_2(z)}{z}\right)^{\frac{k}{4} - \frac{1}{2}}} \right\}^b.$$

•

Proof. In view of Lemma 3.1, $f \in \mathcal{V}_k$ if and only if

$$f'(z) = \frac{\left(\frac{\delta_1(z)}{z}\right)^{\frac{k}{4} + \frac{1}{2}}}{\left(\frac{\delta_2(z)}{z}\right)^{\frac{k}{4} - \frac{1}{2}}},$$

where δ_1, δ_2 are normalized starlike functions in \mathbb{D} . If $f_{\lambda} \in \mathcal{V}_k^{\lambda}(b)$, then due to Theorem 2.3 we can write

(3.2)
$$f'_{\lambda}(z) = \left\{ \frac{\left(\frac{\delta_1(z)}{z}\right)^{\frac{k}{4} + \frac{1}{2}}}{\left(\frac{\delta_2(z)}{z}\right)^{\frac{k}{4} - \frac{1}{2}}} \right\}^{be^{-i\lambda}\cos\lambda}.$$

It is well-known that if δ is a starlike function in \mathbb{D} , then $T(z) = z[\delta(z)/z]^{e^{-i\lambda} \cos \lambda}$ is λ -spirallike function (see [7]). Now using this representation, we get desired result follows from (3.2).

Remark 3.3. If we let $b = 1 - \alpha$, there exist λ -spirallike functions T_1, T_2 in \mathbb{D} such that

$$f_{\lambda}'(z) = \left\{ \frac{\left(\frac{T_1(z)}{z}\right)^{\frac{k}{4} + \frac{1}{2}}}{\left(\frac{T_2(z)}{z}\right)^{\frac{k}{4} - \frac{1}{2}}} \right\}^{1 - \epsilon}$$

which was obtained by Moulis [16].

Using (1.6) and Corollary 2.4, we also obtain the following representation theorem for $S_k^{\lambda}(b)$. **Corollary 3.4.** A function $f_{\lambda} \in S_k^{\lambda}(b)$ if and only if there exists a function μ with bounded variation on $[0, 2\pi]$ satisfying conditions in (2.1) such that

(3.3)
$$f_{\lambda}(z) = z \exp\left[-be^{-i\lambda}\cos\lambda \int_{0}^{2\pi}\log\left(1-ze^{-it}\right)d\mu(t)\right].$$

4. Integral Operators

In [9], Breaz and Breaz; in [10], Breaz et al. studied the following integral operators

(4.1)
$$F_n(z) = \int_0^z \left(\frac{f_1(t)}{t}\right)^{\gamma_1} \dots \left(\frac{f_n(t)}{t}\right)^{\gamma_n} dt,$$

(4.2)
$$G_n(z) = \int_0^z (f_1'(t))^{\gamma_1} \dots (f_n'(t))^{\gamma_n} dt,$$

for $\gamma_j > 0$, $1 \leq j \leq n$ and $\sum_{j=1}^n \gamma_j \leq n+1$. They studied starlikeness and convexity of the operators (4.1) and (4.2). In this section, we investigate these integral operators (4.1) and (4.2) for the classes $\mathcal{S}_k^{\lambda}(b)$ and $\mathcal{V}_k^{\lambda}(b)$.

Theorem 4.1. Let $f_j \in S_k^{\lambda}(b)$ for $1 \leq j \leq n$ with $k \geq 2$, $b \in \mathbb{C} - \{0\}$. Also, let λ be a real number with $|\lambda| < \frac{\pi}{2}$, $\gamma_j > 0$ $(1 \leq j \leq n)$. Then $F_n \in \mathcal{V}_k^{\lambda}(\mu)$ for each positive integer n, where $\mu = b \sum_{j=1}^n \gamma_j$.

Proof. Since $f_j(z) = z + \sum_{n=2}^{\infty} a_{n,j} z^n$, we have $\frac{f_j(z)}{z} \neq 0$ for all $z \in \mathbb{D}$. Therefore by (4.1), we have

$$\frac{F_n''(z)}{F_n'(z)} = \sum_{j=1}^n \gamma_j \left(\frac{f_j'(z)}{f_j(z)} - \frac{1}{z} \right),$$

or equivalently

$$e^{i\lambda} \left(1 + z \frac{F_n''(z)}{F_n'(z)} \right)$$

= $e^{i\lambda} + \sum_{j=1}^n \gamma_j e^{i\lambda} \frac{z f_j'(z)}{f_j(z)} - \sum_{j=1}^n \gamma_j e^{i\lambda}$
= $e^{i\lambda} + (1-b) \cos \lambda \sum_{j=1}^n \gamma_j + \sum_{j=1}^n \gamma_j \left(e^{i\lambda} \frac{z f_j'(z)}{f_j(z)} - (1-b) \cos \lambda \right) - \sum_{j=1}^n \gamma_j e^{i\lambda}.$

Taking real part on both sides, we get (4.3)

$$Re\left(e^{i\lambda}\left(1+z\frac{F_n''(z)}{F_n'(z)}\right)-\left(1-b\sum_{j=1}^n\gamma_j\right)\cos\lambda-i\sin\lambda\right)=\sum_{j=1}^n\gamma_jRe\left(e^{i\lambda}\frac{zf_j'(z)}{f_j(z)}-(1-b)\cos\lambda-i\sin\lambda\right).$$

On the other hand, since $f_j \in S_k^{\lambda}(b)$ for $1 \leq j \leq n$ and by using (1.5), we have

(4.4)
$$\int_{0}^{2\pi} \left| Re\left(\frac{e^{i\lambda}\frac{zJ_{j}(z)}{f_{j}(z)} - (1-b)\cos\lambda - i\sin\lambda}{b}\right) \right| d\theta \le k\pi\cos\lambda.$$

On letting $\mu = b \sum_{j=1}^{n} \gamma_j$, (1.4), (4.3) and (4.4) yield

cl ()

$$\int_{0}^{2\pi} \left| Re\left(\frac{e^{i\lambda}\left(1+z\frac{F_{n}''(z)}{F_{n}'(z)}\right)-\left(1-b\sum_{j=1}^{n}\gamma_{j}\right)\cos\lambda-i\sin\lambda}{b}\right) \right| d\theta$$
$$\leq \sum_{j=1}^{n}\gamma_{j}\int_{0}^{2\pi} \left| Re\left(\frac{e^{i\lambda}\frac{zf_{j}'(z)}{f_{j}(z)}-\left(1-b\right)\cos\lambda-i\sin\lambda}{b}\right) \right| d\theta \leq k\pi\cos\lambda.$$

Then from above inequality, we obtain

$$\int_{0}^{2\pi} \left| Re\left(\frac{e^{i\lambda}\left(1+z\frac{F_{n}''(z)}{F_{n}'(z)}\right)-(1-\mu)\cos\lambda-i\sin\lambda}{\mu}\right) \right| d\theta \le k\pi\cos\lambda.$$

In view of (1.4), it follows that $F_n \in \mathcal{V}_k^{\lambda}(\mu)$ for each positive integer n.

We deduce the following known result from Theorem 4.1. We observed in Section 1 that $S_k^0(1-\alpha) = S_k(\alpha)$ and $\mathcal{V}_k^0(1-\alpha) = \mathcal{V}_k(\alpha)$ for $0 \le \alpha < 1$ and $k \ge 2$. By letting $\lambda = 0$ and $b = 1 - \alpha$, Theorem 4.1 gives the following result obtained in [18].

Corollary 4.2. Let $f_j \in S_k(\alpha)$ for $1 \le j \le n$ with $0 \le \alpha < 1$ and $k \ge 2$. Also, let $\gamma_j > 0$ $(1 \le j \le n)$. If

$$0 \le 1 + (\alpha - 1) \sum_{j=1}^{n} \gamma_j < 1,$$

then $F_n \in \mathcal{V}_k(\beta)$ with $\beta = 1 + (\alpha - 1) \sum_{j=1}^n \gamma_j$.

Remark 4.3. For n = 1 and $\gamma_1 = 1$, Theorem 4.1 proves that if $f_1 \in S_k^{\lambda}(b)$ with $k \ge 2$, then the integral operator

$$F_1(z) = \int_0^z \frac{f_1(z)}{z} dz \in \mathcal{V}_k^{\lambda}(b).$$

In particular, for n = 1, $\gamma_1 = 1$, $\lambda = 0$, b = 1 and k = 2, Theorem 4.1 proves that if $f_1 \in S^*$, then $\int_0^z \frac{f_1(z)}{z} dz \in \mathcal{K}$. This is the famous result found by Alexander [4].

Theorem 4.4. Let $f_j \in \mathcal{V}_k^{\lambda}(b)$ for $1 \leq j \leq n$ with $k \geq 2$, $b \in \mathbb{C} - \{0\}$. Also, let λ be a real number with $|\lambda| < \frac{\pi}{2}$, $\gamma_j > 0$ $(1 \leq j \leq n)$. Then the integral operator $G_n \in \mathcal{V}_k^{\lambda}(\mu)$ for each positive integer n, where $\mu = b \sum_{j=1}^n \gamma_j$.

288

Proof. In view of (4.2), we have

$$\frac{G_n''(z)}{G_n'(z)} = \gamma_1 \frac{f_1''(z)}{f_1'(z)} + \dots + \gamma_n \frac{f_n''(z)}{f_n'(z)},$$

or equivalently

$$e^{i\lambda}\left(1+z\frac{G_n''(z)}{G_n'(z)}\right) = e^{i\lambda} + \sum_{j=1}^n \gamma_j e^{i\lambda}\left(1+\frac{zf_j''(z)}{f_j'(z)}\right) - \sum_{j=1}^n \gamma_j e^{i\lambda}.$$

Subtracting and adding $(1-b) \cos \lambda \sum_{j=1}^{n} \gamma_j$ on the right hand side, taking real part on both sides, and simplifying, we get

(4.5)
$$Re\left(e^{i\lambda}\left(1+z\frac{G_n''(z)}{G_n'(z)}\right)-\left(1-b\sum_{j=1}^n\gamma_j\right)\cos\lambda-i\sin\lambda\right)$$
$$=\sum_{j=1}^n\gamma_j Re\left(e^{i\lambda}\left(1+\frac{zf_j''(z)}{f_j'(z)}\right)-(1-b)\cos\lambda-i\sin\lambda\right).$$

Since $f_j \in \mathcal{V}_k^{\lambda}(b)$ for $1 \leq j \leq n$ and by using (1.4), we obtain

(4.6)
$$\int_{0}^{2\pi} \left| Re\left(\frac{e^{i\lambda} \left(1 + \frac{zf_{j}''(z)}{f_{j}'(z)}\right) - (1-b)\cos\lambda - i\sin\lambda}{b}\right) \right| d\theta \le k\pi\cos\lambda.$$

Therefore letting $\mu = b \sum_{j=1}^{n} \gamma_j$, (1.4), (4.5) and (4.6) give

$$\int_{0}^{2\pi} \left| Re\left(\frac{e^{i\lambda} \left(1 + z \frac{G''_{n}(z)}{G'_{n}(z)} \right) - (1-\mu) \cos \lambda - i \sin \lambda}{\mu} \right) \right| d\theta \le k\pi \cos \lambda.$$

It now follows from (1.4) that $G_n \in \mathcal{V}_k^{\lambda}(\mu)$ for each positive integer n.

Remark 4.5. For n = 1 and $\gamma_1 = 1$, Theorem 4.4 proves that $f_1 \in \mathcal{V}_k^{\lambda}(b)$ with $k \geq 2$, then the integral operator

$$F_1(z) = \int_0^z f_1'(z) dz \in \mathcal{V}_k^{\lambda}(b).$$

Acknowledgements. We thank the referee for his/her insightful suggestions and scholarly guidance to improve the results in the present form.

References

- L. V. Ahlfors, Sufficient conditions for quasiconformal extension, Ann. Math. Studies 79, Princeton Univ. Press, Princeton, N.J., 1974.
- [2] O. P. Ahuja, The Bieberbach conjecture and its impact on the developments in geometric function theory, Math. Chronicle, 15(1986), 1–28.
- [3] O. P. Ahuja and H. Silverman, A survey on spiral-like and related function classes, Math. Chronicle, 20(1991), 39–66.
- [4] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math., 17(1915), 12–22.
- [5] F. M. Al-Oboudi and M. M. Haidan, Spirallike functions of complex order, J. Natural Geom., 19(2000), 53–72.
- [6] M. K. Aouf, F. M. Al-Oboudi and M. M. Haidan, On some results for λ-Spirallike and λ-Robertson functions of complex order, Publ. De L'Institut Math., 77(91)(2005), 93–98.
- [7] T. Basgöze and F. R. Keogh, The Hardy class of a spiral-like function and its derivative, Proc. Amer. Math. Soc., 26(1970), 266–269.
- [8] D. A. Brannan, On functions of bounded boundary rotation I, Proc. Edinburg Math. Soc., 16(1968/69), 339–347.
- [9] D. Breaz and N. Breaz, Two integral operators, Studia Univ. Babeş-Bolyai Math., 47(2002), 13–19.
- [10] D. Breaz, S. Owa and N. Breaz, A new integral univalent operator, Acta Univ. Apulensis Math. Inform., 16(2008), 11–16.
- [11] P. N. Chichra, Regular functions f(z) for which zf'(z) is α -Spiral-like, Proc. Amer. Math. Soc., 49(1975), 151–160.
- [12] O. Lehto, On the distortion of conformal mappings with bounded boundary rotation, Ann. Acad. Sci. Fennicae. Ser. AI Math.-Phys., 124(1952). 14 pp.
- [13] R. J. Libera, Univalent α -Spiral functions, Canad. J. Math., 19(1967), 449-456.
- [14] C. Loewner, Untersuchungen über die Verzerrung bei konformen Abbildungen des Einheitskreises |z| < 1, die durch Funktionen mit nicht verschwindender Ableitung geliefert werden, Ber. Verh. Sächs. Gess. Wiss. Leipzig, 69(1917), 89–106.
- [15] E. J. Moulis, A generalization of univalent functions with bounded boundary rotation, Trans. Amer. Math. Soc., 174(1972), 369–381.
- [16] E. J. Moulis, Generalizations of the Robertson functions, Pacific J. Math., 81(1979), 167–174.
- [17] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natural Sci. Math., 25(1985), 1–12.
- [18] K. I. Noor, M. Arif and W. Ul-Haq, Some properties of certain integral operators, Acta Univ. Apulensis Math. Inform., 21(2010), 89–95.
- [19] K. I. Noor, N. Khan and M. A. Noor, On generalized Spiral-like analytic functions, Filomat, 28(7)(2014), 1493–1503.

- [20] K. I. Noor, B. Malik and S. Mustafa, A survey on functions of bounded boundary and bounded radius rotation, Appl. Math. E-Notes, 12(2012), 136–152.
- [21] L. Spacek, Contribution à la théorie des fonctions univalentes, Casopis Pěst. Mat., 62(1932), 12–19.
- [22] V. Paatero, Über die konforme Abbildung von Gebieten deren Ränder von beschränkter Drehung sind, Ann. Acad. Sci. Fenn. Ser. A, 33(1931), 1–77.
- [23] V. Paatero, Über Gebiete von beschränkter Randdrehung, Ann. Acad. Sci. Fenn. Ser. A, 37(1933), 1–20.
- [24] K. S. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31(3)(1975/76), 311–323.
- [25] B. Pinchuk, A variational method for functions of bounded boundary rotation, Trans. Amer. Math. Soc., 138(1969), 107–113.
- [26] B. Pinchuk, Functions of bounded boundary rotation, Israel J. Math., 10(1971), 6–16.
- [27] M. S. Robertson, On the theory of univalent functions, Ann. of Math., 37(1936), 374–408.
- [28] M. S. Robertson, Coefficients of functions with bounded boundary rotation, Canad. J. Math., 21(1969), 1477–1482.
- [29] M. S. Robertson, Univalent functions f(z) for which zf'(z) is spirallike, Michigan Math. J., **16**(1969), 97–101.
- [30] E. M. Silvia, A note on special classes of p-valent functions, Rocky Mountain J. Math., 9(2)(1979), 365–370.
- [31] P. G. Umarani, Functions of bounded boundary rotation of complex order, Math. Balkanica, 3(1989), 34–43.
- [32] P. Wiatrowski, The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Univ. Lodz. Nauki. Math. Przyrod. Ser. II, 39(1971), 75–85.