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Abstract. In this paper, we deal with the null controllability of semilinear functional

integrodifferential control systems under the Lipschitz continuity of nonlinear terms. More-

over, we establish the regularity and a variation of constant formula for solutions of the

given control systems in Hilbert spaces.

1. Introduction

Let H and V be two complex Hilbert spaces. Assume that V is a dense subspace
in H and the injection of V into H is continuous. The norm on V (resp. H) will
be denoted by || · || (resp. | · |) respectively. Let A be a continuous linear opera-
tor from V into V ∗ which is assumed to satisfy G̊arding’s inequality, and generate
an analytic semigroup (S(t))t≥0. We study the following the semilinear functional
integrodifferential control systems :

(1.1)

{
x
′
(t) = Ax(t) +

∫ t
0
k(t− s)g(s, x(s))ds+Bu(t),

x(0) = x0.

Here, a forcing term k ∈ L2(0, T ;V ∗), x0 ∈ H, and g : R+ × V → H is a nonlinear
mapping as detailed in Section 2.. The controller B is a bounded linear operator
from L2(0, T ;U) to L2(0, T ;H), where U is some Banach space of control variables.

The existence of solutions for a class of semilinear functional integrodifferential
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control systems has been studied by many authors. For example, one finds parabolic
type problems in [3, 17, 18], hyperbolic type problems in [11, 18], and linear cases
in [4, 5, 7, 13, 14]. The background of these problems is to serve as an initial value
problem for many partial integrodifferential equations which arise in problems con-
nected with heat flow in materials, random dynamical systems, and other physical
phenomena. For more details on applications of the theory we refer to the survey
of Balachandran and Dauer [2] and the book by Curtain and Zwart [7].

In recent years, as for the controllability of semilinear differential equations,
Carrasco and Leiva [6] discussed sufficient conditions for approximate controllability
of parabolic equations with delay, Mahmudov [15] in the case that the semilinear
equations with nonlocal conditions with condition on the uniform boundedness of
the Frechet derivative of nonlinear term, and Sakthivel et al. [19] on impulsive
and neutral functional differential equations. As for some considerations on the
trajectory set of (1.1) and that of its corresponding linear system (in case g ≡ 0) as
matters related to (1.1), we refer the reader to Naito [16], Sukavanam and Tomar
[22] and references therein.

In [2, 10] the authors dealt with the approximate controllability of a semilinear
control system as a particular case of sufficient conditions for the approximate
solvability of semilinear equations by assuming that

(1) S(t) is compact operator, and

(2) the linear operator STu :=
∫ T

0
S(t−s)u(s)ds has a bounded inverse operator.

The paper [15] replaces the above condition (2) with

(2-1) The Frechet derivative of nonlinear term is uniformly bounded, and

(2-2) the corresponding linear system (1.1) in case g ≡ 0 and x0 ≡ 0 is approxi-
mately controllable.

In [22] and [23] they studied the control problems of the semilinear equations by
assuming conditions (1), (2-2), a Lipschitz continuity of the nonlinear term, and a
range condition of the controller B with an inequality constraint.

In this paper we replace the condition (1) by the compactness of the embedding
D(A) ⊂ V , and instead of (2.2) and the uniform boundedness f the nonlinear
term, we require the following inequality constraint on the range condition of the
controller B: for any p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U) such that

ST p = STBu.

In Section 2, we will obtain that most parts of the regularity for parabolic lin-
ear equations can also be applicable to (1.1) with nonlinear perturbations. The
approach used here is similar to that developed in [8, 9, 13, 15] on the general
semilnear evolution equations. Moreover, in Section 3, we establish the null con-
trollability of semilinear functional integrodifferential control systems (1.1) under
the Lipschitz continuity instead of the uniform boundedness of the Frechet deriva-
tive of nonlinear term. It is useful for physical applications of the given equations.



Null Controllability of Semilinear Integrodifferential Control Systems 243

2. Regularity for Solutions

If H is identified with its dual space we may write V ⊂ H ⊂ V ∗ densely and
the corresponding injections are continuous. The norm on V , H and V ∗ will be
denoted by || · ||, | · | and || · ||∗, respectively. The duality pairing between the element
v1 of V ∗ and the element v2 of V is denoted by (v1, v2), which is the ordinary inner
product in H if v1, v2 ∈ H. For the sake of simplicity, we may consider

||u||∗ ≤ |u| ≤ ||u||, u ∈ V.

For l ∈ V ∗ we denote (l, v) by the value l(v) of l at v ∈ V . The norm of l as
element of V ∗ is given by

||l||∗ = sup
v∈V

|(l, v)|
||v||

.

Therefore, we assume that V has a stronger topology than H and, for the brevity,
we may regard that

(2.1) ||u||∗ ≤ |u| ≤ ||u||, ∀u ∈ V.

Let a(·, ·) be a bounded sesquilinear form defined in V × V and satisfying
G̊arding’s inequality

Re a(u, u) ≥ c0||u||2 − c1|u|2,

where c0 > 0 and c1 is a real number. Let A be the operator associated with this
sesquilinear form:

(Au, v) = −a(u, v), u, v ∈ V.

Then A is a bounded linear operator from V to V ∗ by the Lax-Milgram theorem.
The realization of A in H which is the restriction of A to

D(A) = {u ∈ V : Au ∈ H}

is also denoted by A. Moreover, for each T > 0, by using interpolation theory we
have

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H).

From the following inequalities

c0||u||2 ≤ Re a(u, u) + c1|u|2 ≤ |Au| |u|+ c1|u|2

≤ (|Au|+ c1|u|)|u| ≤ max{1, c1}||u||D(A)|u|,

where
||u||D(A) = (|Au|2 + |u|2)1/2

is the graph norm of D(A), it follows that there exists a constant C0 > 0 such that

(2.2) ||u|| ≤ C0||u||1/2D(A)|u|
1/2.
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Thus we have the following sequence

(2.3) D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗

where each space is dense in the next one which is a continuous injection.

Lemma 2.1. With the notations (2.1)-(2.3), we have

(V, V ∗)1/2,2 = H,

(D(A), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗(Section
1.3.3 of [21]).

It is also well known that A generates an analytic semigroup S(t) in both H
and V ∗. For the sake of simplicity, we assume that c1 = 0 and hence the closed half
plane {λ : Reλ ≥ 0} is contained in the resolvent set of A.

Lemma 2.2. Let T > 0. Then

H = {x ∈ V ∗ :

∫ T

0

||AetAx||2∗dt <∞}.

Proof. Put u(t) = etAx for x ∈ H. Then,

u′(t) = Au(t), u(0) = x.

As in Theorem 4.1 of Chapter 4 of [14], the solution u belongs to L2(0, T ;V ) ∩
W 1,2(0, T ;V ∗), hence we obtain that∫ T

0

||AetAx||2∗dt =

∫ T

0

||u′(s)||2∗ds <∞.

Conversely, suppose that x ∈ V ∗ and
∫ T

0
||AetAx||2∗dt <∞. Put u(t) = etAx. Then

since A is an isomorphism operator from V to V ∗ there exists a constant c > 0 such
that ∫ T

0

||u(t)||2dt ≤ c
∫ T

0

||Au(t)||2∗dt = c

∫ T

0

||AetAx||2∗dt.

From the assumptions and u
′
(t) = AetAx it follows

u ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H).

Therefore, x = u(0) ∈ H. 2

By Lemma 2.1, from Theorem 3.5.3 of Butzer and Berens [5], we can see that

(V, V ∗)1/2,2 = H.
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Consider the following linear system

(2.4)

{
x
′
(t) = Ax(t) + h(t),

x(0) = x0.

By virtue of Theorem 3.3 of [4](or Theorem 3.1 of [9]), we have the following result
on the corresponding linear equation of (2.4).

Proposition 2.1. Suppose that the assumptions for the principal operator A stated
above are satisfied. Then the following properties hold:

(1) Let V = (D(A), H)1/2,2 where (D(A), H)1/2,2 is the real interpolation space
between D(A) and H(see [ [21]; section 1.3.3], or Lemma 2.1). For x0 ∈ V
and h ∈ L2(0, T ;H), T > 0, there exists a unique solution x of (2.4) belonging
to

L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];V )

and satisfying

(2.5) ||x||L2(0,T ;D(A))∩W 1,2(0,T ;H) ≤ C1(||x0||+ ||h||L2(0,T ;H)),

where C1 is a constant depending on T .

(2) Let x0 ∈ H and h ∈ L2(0, T ;V ∗), T > 0. Then there exists a unique solution
x of (2.4) belonging to

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

(2.6) ||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C1(|x0|+ ||h||L2(0,T ;V ∗)),

where C1 is a constant depending on T .

For the sake of simplicity, we assume that solution semigroup S(t) generated by
A is uniformly bounded:

||S(t)|| ≤M t ≥ 0.

First, we consider the following inequalities.

Lemma 2.3. Suppose that h ∈ L2(0, T ;H) and x(t) =
∫ t

0
S(t − s)h(s)ds for 0 ≤

t ≤ T . Then there exists a constant C2 such that

||x||L2(0,T ;D(A)) ≤ C1||h||L2(0,T ;H),(2.7)

||x||L2(0,T ;H) ≤ C2T ||h||L2(0,T ;H),(2.8)

and

(2.9) ||x||L2(0,T ;V ) ≤ C2

√
T ||h||L2(0,T ;H).
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Proof. The assertion (2.7) is immediately obtained by (2.5). Since

||x||2L2(0,T ;H) =
∫ T

0
|
∫ t

0
S(t− s)h(s)ds|2dt ≤M

∫ T
0

(
∫ t

0
|h(s)|ds)2dt

≤M
∫ T

0
t
∫ t

0
|h(s)|2dsdt ≤M T 2

2

∫ T
0
|h(s)|2ds

it follows that
||x||L2(0,T ;H) ≤ T

√
M/2||h||L2(0,T ;H).

From (2.3), (2.7), and (2.8) it holds that

||x||L2(0,T ;V ) ≤ C0

√
C1T (M/2)1/4||h||L2(0,T ;H).

So, if we take a constant C2 > 0 such that

C2 = max{
√
M/2, C0

√
C1(M/2)1/4},

the proof is complete. 2

Consider the following initial value problem for the abstract semilinear parabolic
equation (1.1). Let U be a Banach space and the controller operator B be a bounded
linear operator from U to H.

Let g : R+ × V → H be a nonlinear mapping satisfying the following:

(F1) For any x ∈ V , the mapping g(·, x) is strongly measurable;

(F2) There exist positive constants L0, L1 such that

|g(t, x)− g(t, x̂)| ≤ L1||x− x̂||,
|g(t, 0)| ≤ L0

for all t ∈ R+, and x, x̂ ∈ V .

For x ∈ L2(0, T ;V ), we set

f(t, x) =

∫ t

0

k(t− s)g(s, x(s))ds,

where k belongs to L2(0, T ).

Lemma 2.4. Let x ∈ L2(0, T ;V ) for any T > 0. Then f(·, x) ∈ L2(0, T ;H) and

(2.10) ||f(·, x)||L2(0,T ;H) ≤ L0||k||L2(0,T )T/
√

2 + ||k||L2(0,T )L1

√
T ||x||L2(0,T ;V ).

Moreover if x, x̂ ∈ L2(0, T ;V ), then

(2.11) ||f(·, x)− f(·, x̂)||L2(0,T ;H) ≤ ||k||L2(0,T )L1

√
T ||x− x̂||L2(0,T ;V ).
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Proof. From (F1), (F2), and using the Hölder inequality, it is easily seen that

||f(·, x)||L2(0,T ;H) ≤ ||f(·, 0)||+ ||f(·, x)− f(·, 0)||

≤

(∫ T

0

|
∫ t

0

k(t− s)g(s, 0)ds|2dt

)1/2

+

(∫ T

0

|
∫ t

0

k(t− s){g(s, x(s))− g(s, 0)}ds|2dt

)1/2

≤ L0||k||L2(0,T )T/
√

2 + ||k||L2(0,T )

√
T ||g(·, x)− g(·, 0)||L2(0,T ;H)

≤ L0||k||L2(0,T )T/
√

2 + ||k||L2(0,T )L1

√
T ||x||L2(0,T ;V ).

The proof of (2.11) is similar. 2

Theorem 2.1.Under the assumptions (F1), and (F2) for the nonlinear mapping f ,
as given by

f(t, x) =

∫ t

0

k(t− s)g(s, x(s))ds,

there exists a unique solution x of (1.1) such that

x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

for any x0 ∈ H. Moreover, there exists a constant C3 such that

(2.12) ||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C3(|x0|+ ||u||L2(0,T ;U)).

Proof. Let us fix T0 > 0 satisfying

(2.13) C2L1T0||k||L2(0,T ) < 1

with the constant C2 in Lemma 2.3. Let y be the solution of

y(t) = S(t)x0 +

∫ t

0

S(t− s){f(s, x(s)) +Bu(s)}ds.

We are going to show that x 7→ y is strictly contractive from L2(0, T0;V ) to itself.
Let y, ŷ belong to V with the same initial condition in [0, T0]. Then from assumption
(2.9), (2.11) and

y(t)− ŷ(t) =

∫ t

0

S(t− s){f(s, x(s))− f(s, x̂(s))}ds

we have

||y − ŷ||L2(0,T0;V ) ≤ C2

√
T0||f(·, x)− f(·, x̂)||L2(0,T0;H)

≤ C2L1T0||k||L2(0,T0)||x(·)− x̂(·)||L2(0,T0;V ).
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So by virtue of the condition (2.13) the contraction mapping principle gives that the
solution of (1.1) exists uniquely in [0, T0]. Let x be a solution of (1.1) and x0 ∈ H.
Then there exists a constant C1 such that

(2.14) ||S(t)x0||L2(0,T0;V ) ≤ C1|x0|

in view of Proposition 2.1. Let

x1(t) =

∫ t

0

S(t− s){f(s, x(s)) +Bu(s)}ds.

Then from (2.11), it follows

||x1||L2(0,T0;V ) ≤ C2

√
T0||f(·, x) +Bu||L2(0,T0;H)(2.15)

≤C2

√
T 0(L1

√
T0||k||L2(0,T0)||x||L2(0,T0;V ) + ||f(·, 0) +Bu||L2(0,T0;H)).

Thus, combining (2.14) with (2.15) we have

||x||L2(0,T0;V ) ≤(1− C2L1T0||k||L2(0,T0))
−1(C1|x0|

+ C2

√
T0||f(·, 0) +Bu||L2(0,T0;H)).

Hence, (2.12) holds. Now from

|x(T0)| =|S(T0)x0 +

∫ T0

0

S(T0 − s){f(s, x(s)) +Bu(s)}ds|

≤M |x0|+ML1

√
T0||k||L2(0,T0)||x||L2(0,T0;V )

+M
√
T0||f(·, 0) +Bu||L2(0,T0;H),

since the condition (2.13) is independent of initial values, the solution of (1.1) can be
extended to the interval [0, nT0] for every natural number n. An analogous estimate
to (2.12) holds for the solution in [0, nT0], and hence for the initial value xnT0 in
the interval [nT0, (n+ 1)T0]. 2

3. Null Controllability of Semilinear Systems

Let S(t) be the analytic semigroup generated by the principal operator A. We
define the linear operator Ŝ from L2(0, T ;H) to H by

ŜT p =

∫ T

0

S(T − s)p(s)ds

for p ∈ L2(0, T ;H). Let x(T ; f, u) be a state value of the system (1.1) at time
T corresponding to the nonlinear term f and the control u. Then the solution
x(T ; f, u) of (1.1) is represented by

x(T ; f, u) = S(T )x0 + ŜT f(·, x) + ŜTBu.
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Definition 3.1. Equation (1.1) is said to be null controllable at time T > 0 if for
a given x0 ∈ H there exists a control u ∈ L2(0, T ;U) such that x(T ; f, u) = 0.

Let GT = ŜTB. Here, we remark that G is a bounded linear operator(see
Proposition 2.1 or Theorem 2.1) but necessary one-to-one. Denote the orthogo-
nal complement in L2(0, T ;U) by [kerGT ]⊥. Let G : [kerGT ]⊥ → ImGT be the
restriction of GT to [kerGT ]⊥. Then we know that G is necessary a one-to-one
operator.

For any (x, h) ∈ H × L2(0, T ;V ∗), define

N(x, h) = S(T )x0 +

∫ T

0

S(T − s)h(s)ds : H × L2(0, T ;V ∗)→ H,

W (x, h) ≡ (G)−1N = (G)−1

(
S(T )x0 +

∫ T

0

S(T − s)h(s)ds

)
.

First, we consider the following linear control equation with a general forcing term
h:

(3.1)

{
x
′
(t) = Ax(t) +Bu(t) + h(t),

x(0) = x0.

The following is immediately seen from Definition 3.1.

Lemma 3.1. The linear system (3.1) is null controllable at time T > 0 if

ImG(= ŜTB) ⊃ ImN.

We need the following hypothesis:

(A) Let us assume the natural assumption that the embedding

D(A) ⊂ V is compact.

(B) For any p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U) such that

ŜT p = ŜTBu.

Remak 3.1. Denote the kernel of the operator ŜT by N , which is a closed subspace
in L2(0, T ;H), and its orthogonal space in L2(0, T ;H) by N⊥. Let B be defined by
(Bu)(·) = Bu(·). Denote the range of the operator B by R(B) and its closure by
R(B) in L2(0, T ;H). As seen in [9, 16], it is easily known that the hypothesis (B)
is equivalent to the following condition: L2(0, T ;H) = R(B) +N .

Lemma 3.2. Let us assume the hypothesis (B). Then we have

D(A) ⊂ ImG.
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Proof. Let x0 ∈ D(A) and put p(s) = (x0 − sAx0)/T . Then p ∈ L2(0, T ;H) and

x0 =

∫ T

0

S(T − s)p(s)ds(= ŜT p).

Hence, from (B) we can choose a control u0 ∈ L2(0, T ;U) satisfying

ŜT p = ŜTBu0,

which implies D(A) ⊂ ImG. 2

Theorem 3.1. For u ∈ L2(0, T ;U), let xu = GTu with xu(0) = 0. Under As-
sumption(A), we have the mapping GT : u → xu is compact from L2(0, T ;U) to
L2(0, T ;V ) ⊂ L2(0, T ;H).

Proof. If u ∈ L2(0, T ;U), with the aid of Proposition 2.1 (or Lemma 2.3), we have
xu ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;V ∗) and satisfy the following inequality:

||xu||L2(0,T ;D(A))∩W 1,2(0,T ;H) ≤ C1||u||L2(0,T ;U),

where C1 is the constant in Proposition 2.1. Hence if u is bounded in L2(0, T ;U),
then so is xu in L2(0, T ;D(A))∩W 1,2(0, T ;H) by the above inequality. Since D(A)
is compactly embedded in V by assumption, the embedding

L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ L2(0, T ;V )

is compact in view of Theorem 2 of J. P. Aubin [1].
Therefore, if we define the operator xu = GTu , then GT is a compact mapping

from L2(0, T ;U) to L2(0, T ;V ). 2

The following lemma is obtained from the proof of Lemma 3 of [8].

Lemma 3.3. Under Hypothesis (B), we have

W (x, h) : H × L2(0, T ;V ∗)→ L2(0, T ;U).

is bounded and the control

(3.2) u(t) = −W (x0, h)

transfers the linear system (3.1) from x0 ∈ D(A) to 0.

Proof. By the definition of G, let

G : [kerGT ]⊥ → ImGT

be the restriction of GT to [kerGT ]⊥. G is necessarily a one-to-one operator. Here,
we remark that by Lemma 3.2, S(T )x0 ∈ ImG since S(T )x0 ∈ D(A) for x0 ∈ D(A).
Define

W (x, h) : H × L2(0, T ;V ∗)→ L2(0, T ;U)
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by W (x, h) ≡ (G)−1N(x, h). From Theorem 3.1, it follows that ImGT is closed and
[kerGT ]⊥ is obviously closed. Hence, the inverse mapping theorem says that G−1

is a bounded linear operator, and so is W . 2

Since the operator BW is bounded, for the sake of simplicity, we assume that

|BW (x0, f)| ≤ ||BW ||(|x0|+ |f |).

Lemma 3.4. For x ∈ L2(0, T ;V ), we set

K(s, x) = −BW (x0, f(s, x(s)) + f(s, x(s)).

Then we obtain the following:

||K(·, x)||L2(0,T ;H) ≤ (1 + ||BW ||) ||k||L2(0,T )

{
L0

T√
2

+ L1

√
T ||x||L2(0,T ;V )

}
+ 2||BW || |x0|

and

||K(·, x1)−K(·, x2)||L2(0,T ;H) ≤ (1 + ||BW ||)||k||L2(0,T )L1

√
T ||x1 − x2||L2(0,T ;V ).

Proof. From (2.10), (2.11) it is easily seen that

||K(·, x)||L2(0,T ;H) ≤ ||K(·, 0)||+ ||K(·, x)−K(·, 0)||
≤ || −BW (x0, f(·, 0)) + f(·, 0)||

+ || −BW (x0, f(·, x)) +BW (x0, f(·, 0)) + f(·, x)− f(·, 0)||

≤ ||BW ||
(
|x0|+ L0||k||L2(0,T )

T√
2

)
+ L0||k||L2(0,T )

T√
2

+ ||BW ||
(
|x0|+ L1||k||L2(0,T )

√
T ||x||L2(0,T ;V )

)
+ L1||k||L2(0,T )

√
T ||x||L2(0,T ;V )

≤ (1 + ||BW ||) ||k||L2(0,T ){L0
T√
2

+ L1

√
T ||x||L2(0,T ;V )}+ 2||BW || |x0|.

Moreover, we obtain

||K(·, x1)−K(·, x2)||L2(0,T ;H)

= || −BW (x0, f(s, x1(s))) + f(s, x1(s)) +BW (x0, f(s, x2(s))− f(s, x2(s))||L2(0,T ;H)

≤ ||BW ||||f(s, x1(s))− f(s, x2(s))||L2(0,T ;H) + ||f(s, x1(s))− f(s, x2(s))||L2(0,T ;H)

≤ (1 + ||BW ||)||k||L2(0,T )L1

√
T ||x1 − x2||L2(0,T ;V ). 2
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Theorem 3.2. Assume the assumptions (F1-2), (A), and (B) be satisfied. Then
for the initial data x0 ∈ D(A) the system (1.1) is null controllable at time T > 0.

Proof. Define the operator F on L2(0, T ;V ) by

Fx(t) =

S(t)x0 +

∫ t

0

S(t− s){−BW (x0, f) + f(s, x)}ds, 0 < t ≤ T,

x0, if t = 0.

Let us fix T0 > 0 so that

(3.3) C0(
T 3

0√
2

)1/2L1M(1 + ||BW || ||k||L2(0,T )) < 1,

where C0 is constant in (2.3). We are going to show that x → Fx is strictly
contractive from L2(0, T0;V ) to itself if the condition (3.3) is satisfied. Let Fx1, Fx2

be the solutions of the above equation with x replaced by x1, x2 ∈ L2(0, T0;V )
respectively. From (3.3) it follows that

||Fx1(t)− Fx2(t)||L2(0,T0;D(A))∩W 1,2(0,T0;H)

≤ ||
∫ T0

0

S(T0 − s){K(s, x1)−K(s, x2)}ds||

≤M
√
T 0||K(·, x1)−K(·, x2)||L2(0,T0;H)

≤ (1 + ||BW ||)MT0L1||k||L2(0,T0)||x1 − x2||L2(0,T0;V )

and hence in view of (2.3) we have

||Fx1(t)− Fx2(t)||L2(0,T0;V )(3.4)

≤ C0||Fx1(t)− Fx2(t)||1/2L2(0,T0;D(A))||Fx1(t)− Fx2(t)||1/2L2(0,T0;H)

≤ C0||Fx1(t)− Fx2(t)||1/2L2(0,T0;D(A))(
T0√

2
)1/2||Fx1(t)− Fx2(t)||1/2W 1,2(0,T0;H)

≤ C0(
T0√

2
)1/2||Fx1(t)− Fx2(t)||L2(0,T0;D(A))∩W 1,2(0,T0;H)

≤ C0(
T0√

2
)1/2MT0L1(1 + ||BW ||)||k||L2(0,T0)||x1 − x2||L2(0,T0;V ).

Here we used the following inequality

||Fx1(t)− Fx2(t)||L2(0,T0;H) = {
∫ T0

0

|Fx1(t)− Fx2(t)|2dt}1/2

= {
∫ T0

0

|
∫ t

0

(Ḟ x1(τ)− Ḟ x2(τ))dτ |2dt}1/2 ≤ {
∫ T0

0

t

∫ t

0

|Ḟ x1(τ)− Ḟ x2(τ)|2dτdt}1/2

≤ T0√
2
||Fx1(t)− Fx2(t)||W1,2(0,T0;H).
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Hence, by virtue of (3.4) the contraction mapping principle gives that the operator
F has unique solution in [0, T0], that is, x is the solution of the following equation:

(3.5)

x(t) = S(t)x0 +

∫ t

0

S(t− s){−BW (x0, f) + f(s, x)}ds, t ≤ T0,

x(0) = x0, if t = 0.

Next we establish the estimates of solution. Let x(·) be the solution of (3.5) in the
(0, T0) and y(·) be the solution of (3.1) with the control u(t) = −W (x0, k) as in
(3.2), i.e., the solution y of (3.1) is represented by

y(t) = S(t)x0 −
∫ t

0

S(t− s)BW (x0, f)ds, t ≥ 0.

Thus, the arguing as in the proof of Lemmas 2.3, 2,4, we have

||x− y||L2(0,T0;V )

= ||
∫ T0

0

S(t− s){−BW (x0, f) + f(s, x)} −Bu(t)}ds||L2(0,T0;V )

≤ ||
∫ T0

0

S(t− s){f(·, x)− f(·, 0) + f(·, 0)}ds||L2(0,T0;V )

≤ C2

√
T 0||f(·, x)− f(·, 0)||L2(0,T0;H) + C2

√
T 0||f(·, 0)||L2(0,T0;H)

≤ C2T0||k||L2(0,T0)L1||x||L2(0,T0;V ) + C2
T

3/2
0√

2
L0||k||L2(0,T0)

≤ C2T0L1||k||L2(0,T0)||x− y||L2(0,T0;V ) + C2T0L1||k||L2(0,T0)||y||L2(0,T0;V )

+ C2
T

3/2
0√

2
L0||k||L2(0,T0).

Therefore, we have

||x− y||L2(0,T0;V )

≤
C2T0L1||k||L2(0,T0)

1− C2T0L1||k||L2(0,T0)
{||y||L2(0,T0;V ) +

√
2T0L0

2L1
}

and hence with the aid of Lemma 2.3, or Theorem 2.1

||x||L2(0,T0;V )

≤ 1

1− C2T0L1||k||L2(0,T0)
{||y||L2(0,T0;V ) +

√
2T0L0

2L1
}

≤ 1

1− C2T0L1||k||L2(0,T0)
{C3(|x0|+ ||u||L2(0,T0;U)) +

√
2T0L0

2L1
}.
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Thus, there exists a constant C4 such that

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C4(1 + |x0|+ ||u||L2(0,T ;U)).

Now from

|x(T0)| = |S(T0)x0|+ |
∫ T0

0

S(T0 − s){−BW (x0, f) + f(s, x)}ds|

≤ (M + 2||BW ||)|x0|+M(1 + ||BW ||){L0||k||L2(0,T )T/
√

2

+ ||k||L2(0,T )L1

√
T ||x||L2(0,T ;V )},

since the condition (3.3) is independent of initial values, the solution of (1.1) can be
extended to the interval [0, nT0] for every natural number n. That is, an analogous
estimate to (3.6) holds for the solution in [0, nT0], and hence for the initial value
xnT0

in the interval [nT0, (n + 1)T0], which means that the system (1.1) is null
controllable at time T > 0 with the control u = −W (x0, f). 2

Theorem 3.3. Let the assumption (F1), (F2) be satisfied and (x0, u) ∈
V × L2(0, T ;U), Then the solution x of the equation (1.1) belongs to x ∈
L2(0, T ;D(A)) ∩W 1,2(0, T ;H) and the mapping

V × L2(0, T ;U) 3 (x0, u) 7→ x ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];V )

is Lipschitz continuous.

Proof. It is easy to show that if x0 ∈ V and f(·, x) ∈ L2(0, T ;H), then x belongs
to L2(0, T ;D(A)) ∩W 1,2(0, T ;H). Let (xi0, ui) ∈ H × L2(0, T ;U) and xi be the
solution of (1.1) with (x0, u) in place of (xi0, ui) for i = 1, 2. Then{

(x1 − x2)
′
(t) = A(x1 − x2)(t) + f(t, x1(t))− f(t, x2(t)) +B(u1 − u2)(t), t > 0,

(x1 − x2)(0) = x1
0 − x2

0.

Hence in view of proposition 2.1 and lemma 2.4, we have

||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H)

(3.6)

≤ C1{||x1
0 − x2

0||+ ||u1 − u2||L2(0,T ;U) + ||f(·, x1)− f(·, x2)||L2(0,T ;H)}

≤ C1{||x1
0 − x2

0||+ ||u1 − u2||L2(0,T ;U) + ||k||L2(0,T )L1

√
T ||x1 − x2||L2(0,T ;V )}

Since

x1(t)− x2(t) = x1
0 − x2

0 +

∫ t

0

(ẋ1(s)− ẋ2(s))ds

We get

||x1 − x2||L2(0,T ;H) ≤
√
T |x1

0 − x2
0|+

T√
2
||x1 − x2||W 1,2(0,T ;H)
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Hence arguing as in (3.4) we get

||x1 − x2||L2(0,T ;V )

(3.7)

≤ C0||x1 − x2||1/2L2(0,T ;D(A))||x1 − x2||1/2L2(0,T ;H)

≤ C0||x1 − x2||1/2L2(0,T ;D(A)){T
1/4|x1

0 − x2
0|1/2 + (

T√
2

)1/2||x1 − x2||1/2W 1,2(0,T ;H)}

≤ C0T
1/4||x1 − x2||1/2L2(0,T ;D(A))|x

1
0 − x2

0|1/2

+ C0(
T√
2

)1/2||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H)

≤ 2−7/4C0|x1
0 − x2

0|+ 2C0(
T√
2

)1/2||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H).

Combining (3.6) and (3.7) we obtain

||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H)(3.8)

≤ C1{||x1
0 − x2

0||+ ||k||L2(0,T )L1

√
T (2−7/4C0||x1

0 − x2
0||

+ 2C0(
T√
2

)1/2||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H)) + ||u1 − u2||L2(0,T ;U)}

= (C1 + 2−7/4C0||k||L2(0,T )L1

√
T )||x1

0 − x2
0||+ C1||u1 − u2||L2(0,T ;U)

+ 23/4C0TL1||k||L2(0,T )||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H).

Suppose that xn0 → x0 in V and let xn and x be the solution (1.1) with xn0 and x0

respectively. Let 0 < T1 ≤ T be such that

23/4C0TL1||k||L2(0,T ) < 1.

Then by virtue of (3.8) with T replaced by T1 we see that

xn → x in L2(0, T ;D(A)) ∩W 1,2(0, T ;H).

This implies that (xn(T1), (xn)T1
)→ (x(T1), xT1

) in V ×L2(0, T ;D(A)). Hence the
same argument shows that

xn → x in L2(T1,min{2T1, T1};D(A)) ∩W 1,2(T1,min{2T1, T1};H).

Repeating this process we conclude that xn → x in L2(0, T ;D(A)) ∩W 1,2(0, T ;H)
for any T > 0. 2

Remark 3.2. Let us we assume the following hypothesis:
For any ε > 0 and p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U) such that

(B1)

{
|Ŝp− ŜBu| < ε,

||Bu||L2(0,t;H) ≤ q1||p||L2(0,t;H), 0 ≤ t ≤ T,
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where q1 is a constant independent of p.

Then, as seen in [12], we note that for every desired final state x1 ∈ H and ε > 0
there exists a control function u ∈ L2(0, T ;U) such that the solution x(T ;u) of
(1.1) satisfies |x(T ;u) − x1| < ε, i.e., the system (1.1) is said to be approximately
controllable in the time interval [0, T ].

Example 3.1. We consider an application of the results obtained in the preceding
sections to a class of partial functional integrodifferential systems with delay terms
dealt with by Naito [16] and Zhou [23]:

(3.9)


∂
∂tu(x, t) = A(x,Dx)u(x, t) +

∫ t
0
k(t− s)g(s, u(x, s))ds+Bαw(t),

(x, t) ∈ Ω× (0, T ), 0 < α < T,

u(x, 0) = u0(x),

The boundary condition attached to (3.9) is given by Dirichlet boundary condition

u|∂Ω = 0, 0 < t ≤ T,

and k belongs to L2(0, T ). Here, Ω ⊂ Rn is a bounded domain with smooth bound-
ary ∂Ω. We set H = L2(Ω) and V = H1

0 (Ω). Let b(u, v) be the sesquilinear form
in H1

0 (Ω)×H1
0 (Ω) defined by

a(u, v) =

∫
Ω


n∑

i,j=1

aij
∂u

∂xi

∂v

∂xj
+

n∑
i=1

βi
∂u

∂xi
v̄ + cuv̄

 dx.

Here, we assume that aij is a real-valued and smooth function for each i, j =
1, · · · , n, and aij(x) = aji(x) for each x ∈ Ω̄ and {aij(x)} is positive definite uni-
formly in Ω, i.e., there exists a positive number c0 such that

n∑
i,j=1

aij(x)ξiξj ≥ c0|ξ|2

for all x ∈ Ω̄ and all real vectors ξ. Let bi ∈ L∞(Ω) and c ∈ L∞(Ω). As is
well known this sesquilinear form a(·, ·) is bounded and satisfying the G̊arding’s
inequality (2.2)(see e.g. Tanabe [20]. Let

(3.13) A(x,Dx) = −
n∑

i,j=1

∂

∂xi
(aij(x)

∂

∂xj
) +

n∑
i=1

βi(x)
∂

∂xi
+ c(x), x ∈ Ω

be the associated uniformly elliptic differential operator of second order. Then the
realization of −A(x,Dx) In L2(Ω) under the Dirichlet boundary condition is exactly
A, i.e.,

D(A) = W 2,2(Ω) ∩H1
0 (Ω),

Au = −A(x,Dx)u, ∀u ∈ D(A).
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It is not difficult to verify that Au = −A(x,Dx)u for u ∈ H1
0 (Ω) in the sense of

distribution and u|∂Ω = 0 for u ∈ H1
0 (Ω) also in the sense of distribution(see Lions

and Magenes [14]), and

(Au, v) = −a(u, v), u, v ∈ H1
0 (Ω).

We consider the nonlinear term g given by

g(t, u) = γ(t){||Dxu(x, t)||+ φ(u(x, t))}, γ ∈ C([0, T ]), φ ∈ C(H).

Then g is not uniformly bounded and satisfies hypotheses (F1)and (F2). Let U = H
be the space of control variables and let us define the intercept controller operator
Bα(0 < α < T ) on L2(0, T ;H) by

Bαw(t) =

{
0, 0 ≤ t < α,

w(t), α ≤ t ≤ T

for w ∈ L2(0, T ;H). For a given p ∈ L2(0, T ;H) let us choose a control function w
satisfying

w(t) =

{
0, 0 ≤ t < α,

p(t) + α
T−αS(t− α

T−α (t− α))p( α
T−α (t− α)), α ≤ t ≤ T.

Then w ∈ L2(0, T ;H) and Ŝp = ŜBαw, which is that the controller Bα satisfies
Assumption (B). Hence, for the initial data u0 ∈W 2,2(Ω)∩H1

0 (Ω) the system (3.9)
is null controllable.

Acknowledgements. Authors would like to thank the referees for their useful
suggestions which have significantly improved the paper.
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