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Abstract. In the present paper, absolute matrix summability of infinite series

is studied. A new theorem concerning absolute matrix summability factors, which

generalizes a known theorem dealing with absolute Riesz summability factors of infinite

series, is proved using almost increasing and δ-quasi-monotone sequences. Also, a result

dealing with absolute Cesàro summability is given.

1. Introduction

A positive sequence (vn) is said to be almost increasing if there exists a
positive increasing sequence (cn) and two positive constants K and L such that
Kcn ≤ vn ≤ Lcn (see [1]). A sequence (yn) is said to be δ-quasi-monotone, if
yn → 0, yn > 0 ultimately and ∆yn ≥ −δn, where ∆yn=yn − yn+1 and δ = (δn) is
a sequence of positive numbers (see [2]). Let

∑
an be a given infinite series with

partial sums (sn). By (un) and (tn) we denote the n-th (C, 1) means of the sequences
(sn) and (nan), respectively. The series

∑
an is said to be |C, 1|k summable, k ≥ 1,

if (see [6], [8])

∞∑
n=1

nk−1|un − un−1|k =

∞∑
n=1

1

n
|tn|k <∞.(1.1)

Let (pn) be a sequence of positive numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1) .(1.2)
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The sequence-to-sequence transformation

zn =
1

Pn

n∑
v=0

pvsv(1.3)

defines the sequence (zn) of the Riesz mean of the sequence (sn), generated by
the sequence of coefficients (pn) (see [7]). The series

∑
an is said to be

∣∣N̄ , pn∣∣k
summable, k ≥ 1, if (see [3])

∞∑
n=1

(
Pn

pn

)k−1

|∆zn−1|k <∞,(1.4)

where

∆zn−1 = − pn
PnPn−1

n∑
v=1

Pv−1av, n ≥ 1.

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero
diagonal entries. Then A defines the sequence-to-sequence transformation,
mapping the sequence s = (sn) to As = (An(s)), where

An(s) =

n∑
i=0

anisi, n = 0, 1, ...(1.5)

The series
∑
an is said to be |A, pn|k summable, k ≥ 1, if (see [9])

∞∑
n=1

(
Pn

pn

)k−1

|∆̄An(s)|k <∞,(1.6)

where

∆̄An(s) = An(s)−An−1(s).(1.7)

When we take anv = pv

Pn
, then |A, pn|k summability is the same as

∣∣N̄ , pn∣∣k
summability. Also, when we take anv = pv

Pn
and pn = 1 for all values of n, |A, pn|k

reduces to |C, 1|k summability.
Let A = (anv) be a normal matrix. Lower semimatrices Ā = (ānv) and Â =

(ânv) are defined as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ...(1.8)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ...(1.9)
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Ā and Â are the well-known matrices of series-to-sequence and series-to-series
transformations, respectively. Then, we write

An (s) =

n∑
i=0

anisi =

n∑
i=0

āniai(1.10)

and

∆̄An (s) =

n∑
i=0

âniai.(1.11)

2. Known Result

In [4, 5], the following theorem dealing with
∣∣N̄ , pn∣∣k summability factors of

infinite series has been proved by Bor.

Theorem 2.1. Let (Xn) be an almost increasing sequence such that
|∆Xn| = O(Xn/n) and λn → 0 as n → ∞. Suppose that there exists a sequence
of numbers (An) such that it is δ-quasi-monotone with

∑
nXnδn <∞,

∑
AnXn is

convergent and |∆λn| ≤ |An| for all n. If

m∑
n=1

1

n
|λn| = O(1) as m→∞,(2.1)

m∑
n=1

1

n
|tn|k = O(Xm) as m→∞,(2.2)

and

m∑
n=1

pn
Pn
|tn|k = O(Xm) as m→∞,(2.3)

then the series
∑
anλn is |N̄ , pn|k summable, k ≥ 1.

3. Main Result

The aim of this paper is to prove following more general theorem dealing with
|A, pn|k summability.

Theorem 3.1. Let A = (anv) be a positive normal matrix such that

ān0 = 1, n = 0, 1, ...,(3.1)

an−1,v ≥ anv, for n ≥ v + 1,(3.2)
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ann = O

(
pn
Pn

)
.(3.3)

If all conditions of Theorem 2.1 are satisfied, then the series
∑
anλn is |A, pn|k

summable, k ≥ 1.

Lemma 3.2.([4]) Under the conditions of Theorem 3.1, we have

| λn | Xn = O (1) as n→∞.(3.4)

Lemma 3.3.([5]) Let (Xn) be an almost increasing sequence such that
n | ∆Xn |= O (Xn). If (An) is a δ-quasi monotone with

∑
nXnδn < ∞, and∑

AnXn is convergent, then

nAnXn = O (1) as n→∞,(3.5)

∞∑
n=1

nXn | ∆An |<∞.(3.6)

4. Proof of Theorem 3.1

Let (Mn) denotes A-transform of the series
∑
anλn. Then, by (1.10) and (1.11),

we have

∆̄Mn =

n∑
v=0

ânvavλv =

n∑
v=1

ânvλv
v

vav.

Applying Abel’s transformation to above sum, we get

∆̄Mn =

n−1∑
v=1

∆v

(
ânvλv
v

) v∑
r=1

rar +
ânnλn
n

n∑
r=1

rar

=
n+ 1

n
annλntn +

n−1∑
v=1

v + 1

v
∆v (ânv)λvtv

+

n−1∑
v=1

v + 1

v
ân,v+1∆λvtv +

n−1∑
v=1

ân,v+1λv+1
tv
v

= Mn,1 +Mn,2 +Mn,3 +Mn,4.

To prove Theorem 3.1, we will show that

∞∑
n=1

(
Pn

pn

)k−1

|Mn,r|k <∞, for r = 1, 2, 3, 4.
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First, by using (2.3), (3.3) and (3.4), we have

m∑
n=1

(
Pn

pn

)k−1

|Mn,1|k =

m∑
n=1

(
Pn

pn

)k−1 ∣∣∣∣n+ 1

n
annλntn

∣∣∣∣k
= O(1)

m∑
n=1

(
Pn

pn

)k−1

aknn|λn|k|tn|k

= O(1)

m∑
n=1

pn
Pn
|λn|k−1|λn||tn|k

= O(1)

m∑
n=1

pn
Pn
|λn||tn|k

= O(1)

m−1∑
n=1

∆|λn|
n∑

r=1

pr
Pr
|tr|k +O(1)|λm|

m∑
n=1

pn
Pn
|tn|k

= O(1)

m−1∑
n=1

|∆λn|Xn +O(1)|λm|Xm

= O(1)

m−1∑
n=1

| An | Xn +O(1)|λm|Xm

= O(1) as m→∞.

Now, as in Mn,1, we have

m+1∑
n=2

(
Pn

pn

)k−1

|Mn,2|k = O(1)

m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

|∆v(ânv)| |λv| |tv|

)k

= O(1)

m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

|∆v(ânv)| |λv|k |tv |
k

)

×

(
n−1∑
v=1

|∆v(ânv)|

)k−1

.

Since

∆v(ânv) = ânv − ân,v+1

= ānv − ān−1,v − ān,v+1 + ān−1,v+1

= anv − an−1,v(4.1)

by (1.8) and (1.9), we have

n−1∑
v=1

|∆v(ânv)| =
n−1∑
v=1

(an−1,v − anv) ≤ ann
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by using (1.8), (3.1) and (3.2). Hence, we get

m+1∑
n=2

(
Pn

pn

)k−1

|Mn,2|k = O(1)

m∑
v=1

|λv|k−1|λv||tv|k
m+1∑

n=v+1

(
Pn

pn

)k−1

ak−1nn |∆v(ânv)|

= O(1)

m∑
v=1

|λv| |tv|k
m+1∑

n=v+1

|∆v(ânv)| .

Now, using (3.2) and (4.1), we obtain

m+1∑
n=v+1

|∆v(ânv)| =
m+1∑

n=v+1

(an−1,v − anv) ≤ avv,

then
m+1∑
n=2

(
Pn

pn

)k−1

|Mn,2|k = O(1)

m∑
v=1

|λv| |tv|k avv

= O(1)

m∑
v=1

|λv| |tv|k
pv
Pv

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Also, we have

m+1∑
n=2

(
Pn

pn

)k−1

|Mn,3|k =

m+1∑
n=2

(
Pn

pn

)k−1
∣∣∣∣∣
n−1∑
v=1

v + 1

v
ân,v+1∆λvtv

∣∣∣∣∣
k

= O(1)

m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

|ân,v+1||∆λv||tv|

)k

= O(1)

m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

|ân,v+1||Av||tv|

)k

= O(1)

m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

|ân,v+1||Av||tv|k
)

×

(
n−1∑
v=1

|ân,v+1||Av|

)k−1

= O(1)

m∑
v=1

|Av||tv|k
m+1∑

n=v+1

|ân,v+1|.

By (1.8), (1.9), (3.1) and (3.2), we obtain

|ân,v+1| =
v∑

i=0

(an−1,i − ani).
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Thus, using (1.8) and (3.1), we have

m+1∑
n=v+1

|ân,v+1| =
m+1∑

n=v+1

v∑
i=0

(an−1,i − ani) ≤ 1,

then we get

m+1∑
n=2

(
Pn

pn

)k−1

|Mn,3|k = O(1)

m∑
v=1

|Av||tv|k = O(1)

m∑
v=1

v|Av|
1

v
|tv|k

= O(1)

m−1∑
v=1

∆(v|Av|)
v∑

r=1

1

r
|tr|k +O(1)m|Am|

m∑
v=1

1

v
|tv|k

= O(1)

m−1∑
v=1

v|∆Av|Xv +O(1)

m−1∑
v=1

|Av|Xv +O(1)m|Am|Xm

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3. Again, operating
Hölder’s inequality, we have

m+1∑
n=2

(
Pn

pn

)k−1

|Mn,4|k ≤
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

|ân,v+1||λv+1|
|tv|
v

)k

≤
m+1∑
n=2

(
Pn

pn

)k−1
(

n−1∑
v=1

|ân,v+1||λv+1|
|tv|k

v

)

×

(
n−1∑
v=1

|ân,v+1|
|λv+1|
v

)k−1

= O(1)

m∑
v=1

|λv+1|
v
|tv|k

m+1∑
n=v+1

|ân,v+1|

= O(1)

m∑
v=1

|λv+1|
v
|tv|k

= O(1)

m−1∑
v=1

∆|λv+1|
v∑

r=1

1

r
|tr|k +O(1)|λm+1|

m∑
v=1

1

v
|tv|k

= O(1)

m−1∑
v=1

|∆λv+1|Xv+1 +O(1)|λm+1|Xm+1

= O(1)

m−1∑
v=1

|Av+1|Xv+1 +O(1)|λm+1|Xm+1

= O(1) as m→∞,
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by (2.1), (2.2), (3.3) and (3.4). This completes the proof of Theorem 3.1. 2

If we take anv = pv

Pn
in this theorem, then we get Theorem 2.1. If we take

anv = pv

Pn
and pn = 1 for all values of n, then we get a result for |C, 1|k summabil-

ity.
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