An Application of Absolute Matrix Summability using Almost Increasing and δ-quasi-monotone Sequences

Hikmet Seyhan Özarslan
Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey
e-mail: seyhan@erciyes.edu.tr and hseyhan38@gmail.com

Abstract. In the present paper, absolute matrix summability of infinite series is studied. A new theorem concerning absolute matrix summability factors, which generalizes a known theorem dealing with absolute Riesz summability factors of infinite series, is proved using almost increasing and δ-quasi-monotone sequences. Also, a result dealing with absolute Cesàro summability is given.

1. Introduction

A positive sequence $\left(v_{n}\right)$ is said to be almost increasing if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants K and L such that $K c_{n} \leq v_{n} \leq L c_{n}$ (see [1]). A sequence (y_{n}) is said to be δ-quasi-monotone, if $y_{n} \rightarrow 0, y_{n}>0$ ultimately and $\Delta y_{n} \geq-\delta_{n}$, where $\Delta y_{n}=y_{n}-y_{n+1}$ and $\delta=\left(\delta_{n}\right)$ is a sequence of positive numbers (see [2]). Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. By $\left(u_{n}\right)$ and $\left(t_{n}\right)$ we denote the n -th $(C, 1)$ means of the sequences $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively. The series $\sum a_{n}$ is said to be $|C, 1|_{k}$ summable, $k \geq 1$, if (see [6], [8])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}-u_{n-1}\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k}<\infty \tag{1.1}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, \quad i \geq 1\right) \tag{1.2}
\end{equation*}
$$

Received October 31, 2017; revised August 9, 2018; accepted August 13, 2018. 2010 Mathematics Subject Classification: 26D15, 40D15, 40F05, 40G99.
Key words and phrases: summability factors, almost increasing sequences, absolute matrix summability, quasi-monotone sequences, infinite series, Hölder inequality, Minkowski inequality.

The sequence-to-sequence transformation

$$
\begin{equation*}
z_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.3}
\end{equation*}
$$

defines the sequence $\left(z_{n}\right)$ of the Riesz mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [7]). The series $\sum a_{n}$ is said to be $\left|\bar{N}, p_{n}\right|_{k}$ summable, $k \geq 1$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\Delta z_{n-1}\right|^{k}<\infty \tag{1.4}
\end{equation*}
$$

where

$$
\Delta z_{n-1}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}, \quad n \geq 1
$$

Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where

$$
\begin{equation*}
A_{n}(s)=\sum_{i=0}^{n} a_{n i} s_{i}, \quad n=0,1, \ldots \tag{1.5}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be $\left|A, p_{n}\right|_{k}$ summable, $k \geq 1$, if (see [9])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s) \tag{1.7}
\end{equation*}
$$

When we take $a_{n v}=\frac{p_{v}}{P_{n}}$, then $\left|A, p_{n}\right|_{k}$ summability is the same as $\left|\bar{N}, p_{n}\right|_{k}$ summability. Also, when we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of $n,\left|A, p_{n}\right|_{k}$ reduces to $|C, 1|_{k}$ summability.

Let $A=\left(a_{n v}\right)$ be a normal matrix. Lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=$ ($\hat{a}_{n v}$) are defined as follows:

$$
\begin{equation*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots \tag{1.9}
\end{equation*}
$$

\bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we write

$$
\begin{equation*}
A_{n}(s)=\sum_{i=0}^{n} a_{n i} s_{i}=\sum_{i=0}^{n} \bar{a}_{n i} a_{i} \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=\sum_{i=0}^{n} \hat{a}_{n i} a_{i} \tag{1.11}
\end{equation*}
$$

2. Known Result

In $[4,5]$, the following theorem dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series has been proved by Bor.
Theorem 2.1. Let $\left(X_{n}\right)$ be an almost increasing sequence such that $\left|\Delta X_{n}\right|=O\left(X_{n} / n\right)$ and $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers $\left(A_{n}\right)$ such that it is δ-quasi-monotone with $\sum n X_{n} \delta_{n}<\infty, \sum A_{n} X_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ for all n. If

$$
\begin{gather*}
\sum_{n=1}^{m} \frac{1}{n}\left|\lambda_{n}\right|=O(1) \quad \text { as } \quad m \rightarrow \infty \tag{2.1}\\
\sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{2.2}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{2.3}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is $\left|\bar{N}, p_{n}\right|_{k}$ summable, $k \geq 1$.

3. Main Result

The aim of this paper is to prove following more general theorem dealing with $\left|A, p_{n}\right|_{k}$ summability.
Theorem 3.1. Let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{gather*}
\bar{a}_{n 0}=1, \quad n=0,1, \ldots \tag{3.1}\\
a_{n-1, v} \geq a_{n v}, \quad \text { for } \quad n \geq v+1, \tag{3.2}
\end{gather*}
$$

$$
\begin{equation*}
a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right) \tag{3.3}
\end{equation*}
$$

If all conditions of Theorem 2.1 are satisfied, then the series $\sum a_{n} \lambda_{n}$ is $\left|A, p_{n}\right|_{k}$ summable, $k \geq 1$.
Lemma 3.2.([4]) Under the conditions of Theorem 3.1, we have

$$
\begin{equation*}
\left|\lambda_{n}\right| X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty . \tag{3.4}
\end{equation*}
$$

Lemma 3.3.([5]) Let $\left(X_{n}\right)$ be an almost increasing sequence such that $n\left|\Delta X_{n}\right|=O\left(X_{n}\right)$. If $\left(A_{n}\right)$ is a δ-quasi monotone with $\sum n X_{n} \delta_{n}<\infty$, and $\sum A_{n} X_{n}$ is convergent, then

$$
\begin{gather*}
n A_{n} X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty, \tag{3.5}\\
\sum_{n=1}^{\infty} n X_{n}\left|\Delta A_{n}\right|<\infty \tag{3.6}
\end{gather*}
$$

4. Proof of Theorem 3.1

Let $\left(M_{n}\right)$ denotes A-transform of the series $\sum a_{n} \lambda_{n}$. Then, by (1.10) and (1.11), we have

$$
\bar{\Delta} M_{n}=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \lambda_{v}=\sum_{v=1}^{n} \frac{\hat{a}_{n v} \lambda_{v}}{v} v a_{v} .
$$

Applying Abel's transformation to above sum, we get

$$
\begin{aligned}
\bar{\Delta} M_{n}= & \sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} \lambda_{n}}{n} \sum_{r=1}^{n} r a_{r} \\
= & \frac{n+1}{n} a_{n n} \lambda_{n} t_{n}+\sum_{v=1}^{n-1} \frac{v+1}{v} \Delta_{v}\left(\hat{a}_{n v}\right) \lambda_{v} t_{v} \\
& +\sum_{v=1}^{n-1} \frac{v+1}{v} \hat{a}_{n, v+1} \Delta \lambda_{v} t_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \frac{t_{v}}{v} \\
= & M_{n, 1}+M_{n, 2}+M_{n, 3}+M_{n, 4} .
\end{aligned}
$$

To prove Theorem 3.1, we will show that

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|M_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 .
$$

First, by using (2.3), (3.3) and (3.4), we have

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|M_{n, 1}\right|^{k} & =\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\frac{n+1}{n} a_{n n} \lambda_{n} t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} a_{n n}^{k}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{r=1}^{n} \frac{p_{r}}{P_{r}}\left|t_{r}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{n=1}^{m-1}\left|A_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) a s m \rightarrow \infty
\end{aligned}
$$

Now, as in $M_{n, 1}$, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|M_{n, 2}\right|^{k}= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1}
\end{aligned}
$$

Since

$$
\begin{align*}
\Delta_{v}\left(\hat{a}_{n v}\right) & =\hat{a}_{n v}-\hat{a}_{n, v+1} \\
& =\bar{a}_{n v}-\bar{a}_{n-1, v}-\bar{a}_{n, v+1}+\bar{a}_{n-1, v+1} \\
& =a_{n v}-a_{n-1, v} \tag{4.1}
\end{align*}
$$

by (1.8) and (1.9), we have

$$
\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|=\sum_{v=1}^{n-1}\left(a_{n-1, v}-a_{n v}\right) \leq a_{n n}
$$

by using (1.8), (3.1) and (3.2). Hence, we get

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|M_{n, 2}\right|^{k} & =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} a_{n n}^{k-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| .
\end{aligned}
$$

Now, using (3.2) and (4.1), we obtain

$$
\sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|=\sum_{n=v+1}^{m+1}\left(a_{n-1, v}-a_{n v}\right) \leq a_{v v},
$$

then

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|M_{n, 2}\right|^{k} & =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} a_{v v} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \frac{p_{v}}{P_{v}} \\
& =O(1) \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Also, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|M_{n, 3}\right|^{k}= & \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\sum_{v=1}^{n-1} \frac{v+1}{v} \hat{a}_{n, v+1} \Delta \lambda_{v} t_{v}\right|^{k} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|A_{v}\right|\left|t_{v}\right|\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|A_{v}\right|\left|t_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|A_{v}\right|\right)^{k-1} \\
= & O(1) \sum_{v=1}^{m}\left|A_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\hat{a}_{n, v+1}\right| .
\end{aligned}
$$

By (1.8), (1.9), (3.1) and (3.2), we obtain

$$
\left|\hat{a}_{n, v+1}\right|=\sum_{i=0}^{v}\left(a_{n-1, i}-a_{n i}\right) .
$$

Thus, using (1.8) and (3.1), we have

$$
\sum_{n=v+1}^{m+1}\left|\hat{a}_{n, v+1}\right|=\sum_{n=v+1}^{m+1} \sum_{i=0}^{v}\left(a_{n-1, i}-a_{n i}\right) \leq 1
$$

then we get

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|M_{n, 3}\right|^{k} & =O(1) \sum_{v=1}^{m}\left|A_{v} \| t_{v}\right|^{k}=O(1) \sum_{v=1}^{m} v\left|A_{v}\right| \frac{1}{v}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|A_{v}\right|\right) \sum_{r=1}^{v} \frac{1}{r}\left|t_{r}\right|^{k}+O(1) m\left|A_{m}\right| \sum_{v=1}^{m} \frac{1}{v}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta A_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1}\left|A_{v}\right| X_{v}+O(1) m\left|A_{m}\right| X_{m} \\
& =O(1) \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3. Again, operating Hölder's inequality, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|M_{n, 4}\right|^{k} \leq & \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|}{v}\right)^{k} \\
\leq & \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v}\right)^{k} \\
& \times\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \frac{\left|\lambda_{v+1}\right|}{v}\right)^{k-1} \\
= & O(1) \sum_{v=1}^{m} \frac{\left|\lambda_{v+1}\right|}{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\hat{a}_{n, v+1}\right| \\
= & O(1) \sum_{v=1}^{m} \frac{\left|\lambda_{v+1}\right|}{v}\left|t_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v+1}\right| \sum_{r=1}^{v} \frac{1}{r}\left|t_{r}\right|^{k}+O(1)\left|\lambda_{m+1}\right| \sum_{v=1}^{m} \frac{1}{v}\left|t_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v+1}\right| X_{v+1}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
= & O(1) \sum_{v=1}^{m-1}\left|A_{v+1}\right| X_{v+1}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
= & O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by (2.1), (2.2), (3.3) and (3.4). This completes the proof of Theorem 3.1.
If we take $a_{n v}=\frac{p_{v}}{P_{n}}$ in this theorem, then we get Theorem 2.1. If we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n, then we get a result for $|C, 1|_{k}$ summability.

References

[1] N. K. Bari and S. B. Stečkin, Best approximations and differential proprerties of two conjugate functions, Tr. Mosk. Mat. Obs., 5(1956), 483-522.
[2] R. P. Boas, Quasi-positive sequences and trigonometric series, Proc. London Math. Soc. (3), 14a(1965), 38-46.
[3] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc., 97(1985), 147-149.
[4] H. Bor, An application of almost increasing and δ-quasi-monotone sequences, JIPAM. J. Inequal. Pure Appl. Math., 1(2)(2000), Article 18, 6 pp.
[5] H. Bor, Corrigendum on the paper "An application of almost increasing and δ-quasimonotone sequences", JIPAM. J. Inequal. Pure Appl. Math., 3(1)(2002), Article 16, 2 pp .
[6] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7(1957), 113-141.
[7] G. H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.
[8] E. Kogbetliantz, Sur les séries absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math., 49(1925), 234-256.
[9] W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV, Indian J. Pure Appl. Math., 34(11)(2003), 1547-1557.

