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ABSTRACT. In the present paper, absolute matrix summability of infinite series
is studied. A new theorem concerning absolute matrix summability factors, which
generalizes a known theorem dealing with absolute Riesz summability factors of infinite
series, is proved using almost increasing and J-quasi-monotone sequences. Also, a result
dealing with absolute Cesaro summability is given.

1. Introduction

A positive sequence (v,) is said to be almost increasing if there exists a
positive increasing sequence (c¢,) and two positive constants K and L such that
Ke, < vy, < Ley, (see [1]). A sequence (y,) is said to be d-quasi-monotone, if
Yn — 0, yp > 0 ultimately and Ay, > —d,, where Ay, =y, — yn+1 and § = (4,) is
a sequence of positive numbers (see [2]). Let > a, be a given infinite series with
partial sums (s, ). By (uy) and (t,,) we denote the n-th (C, 1) means of the sequences
(sn) and (nay,), respectively. The series > ay, is said to be |C, 1| summable, k > 1,
if (see [6], [8])

oo oo 1
(1.1) zzlnk_lmn —up_|F = 2:1 g|tn|’C < 00.
n= n=

Let (p,) be a sequence of positive numbers such that

(1.2) Pn:va—M)o as n—oo, (P_;j=p_;=0, i>1).

v=0
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The sequence-to-sequence transformation

1 n
1.3 Zn = — Doy
(1.3) o 2;;

defines the sequence (2,,) of the Riesz mean of the sequence (s,), generated by
the sequence of coefficients (p,,) (see [7]). The series > a, is said to be |N,pn’]C
summable, k > 1, if (see [3])

oo P k—1
(1.4) > (”) 1Az 1]F < o0,

1 \Pn
where
p n
Nz g = ——2— P,_1a,, n>1.
n—1 PnPn—l ; v—1Wy =
Let A = (an,) be a normal matrix, i.e., a lower triangular matrix of nonzero
diagonal entries. = Then A defines the sequence-to-sequence transformation,

mapping the sequence s = (s,) to As = (A,(s)), where
n

(1.5) An(s) :Z@m‘«% n=01,..
=0

The series ) a,, is said to be |A, py|, summable, k > 1, if (see [9])

(1.6 > (P")H A < oo,

n=1 \Pn
where
(1.7) AA,(s) = An(s) — Ap_1(s).
When we take a,, = 1’;’;, then |A,py|, summability is the same as |]\_f , pn’ .

summability. Also, when we take a,, = %’l and p, = 1 for all values of n, |A, py|,
reduces to |C, 1|, summability.

Let A = (any) be a normal matrix. Lower semimatrices A = (@) and A =
(Gny) are defined as follows:

n
(1.8) I :Zam, n,v=0,1,...
=

and

(19) Ggo = Qg = apo, lny = Oy — an—l,vy n=1, 27
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A and A are the well-known matrices of series-to-sequence and series-to-series
transformations, respectively. Then, we write

(1'10) A, (5) = Zanisi = Zam’az‘
1=0 1=0

and
(1.11) AAy(s) = ) amiai
=0

2. Known Result

In [4, 5], the following theorem dealing with |N , Pn
infinite series has been proved by Bor.

|k summability factors of

Theorem 2.1. Let (X,,) be an almost increasing sequence such that
IAX,| = O(X,/n) and N\, — 0 as n — oo. Suppose that there exists a sequence
of numbers (Ay) such that it is 0-quasi-monotone with Y nX,0, < 00, > A, X, is
convergent and |AN,| < |A,| for all n. If

1
2.1 —|An| =
(2.1) Z:: . |=0(1) as m — 00,
(2.2) i l|tn|k =0(X,,) as m — 00
n=1 n ’
and
(2.3) Z % talF = O(Xm) as  m— o0,

then the series Y. apA, is |N, pu| summable, k > 1.

3. Main Result

The aim of this paper is to prove following more general theorem dealing with
|A, pr, summability.

Theorem 3.1. Let A = (an,) be a positive normal matriz such that

(3.1) Gno=1, n=0,1,..,

(3.2) p—1p > Qny, for n>v+1,
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(3.3) Uy = O <’];:> .

If all conditions of Theorem 2.1 are satisfied, then the series Y anA, is |A, pnlk
summable, k > 1.

Lemma 3.2.([4]) Under the conditions of Theorem 3.1, we have
(3.4) [ An | Xn=0(1) as n— oo.
Lemma 3.3.([5]) Let (X,) be an almost increasing sequence such that

n | AX, |= O(X,). If (4,) is a d-quasi monotone with > nX,d, < oo, and
> A, X, is convergent, then

(3.5) nA, X, =0(1) as n— oo,
(3.6) > X, | A4, |< oo
n=1

4. Proof of Theorem 3.1
Let (M,,) denotes A-transform of the series Y anA,. Then, by (1.10) and (1.11),

we have

n

Gy Ao
2 a,.
v

v=1

AMn = Z&nva’u)\v =
v=0

Applying Abel’s transformation to above sum, we get

n—1 ~ v ~ n
AM,, Z A, <an2)\v> Z Tar + an;;)\n Z ra,
v=1

r=1 r=1
—1
n—+1 ~—v+1 .
= Tann/\ntn + Z A, (am)) Avty
v=1
n—1 n—1
v+1., R t
+ 2; Tan,v+1A>\vtv + 24: an,v—&-l)\v—&-l;@
v= v=

= n,1 + Mn,Z + Mn,3 + Mn,4-

To prove Theorem 3.1, we will show that

00 P k—1
Z <n> |Mn,r|k <oo, for r=1,234
n=1 Pn
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First, by using (2.3), (3.3) and (3.4), we have

m k—1 m k—1 k
P, P, 1
o1 \Pn o1 \Pn
m P k—1
0 Y (2] dhalaalie
ne1 \Pn
~ Dn k—1 k
1) Z F‘An| |)‘n||tn|
n=1""

~ Dn
=0<1>ZF\A It
n=1

Al |Zpi|t ¥ +0(1) wz

= 0(1) 3 1AMIXo 4+ O() Al X

= 0(1) 3 [ An | X+ O(D) Al Xom

=0(1) as m — oo.

Now, as in M, 1, we have

Zil (Zj)k_l |M,, 2" = ()(1)7%1 (p:)k (Z 1A (Gno)| [ Ao [to |>k

n=2

- ()(1)%1 (p:)k <Z | A ()| [Ao]*

n—1 k-1
X (va(amﬂ) :

Av(dnv) = d'rw - &n,v+1

Since

= Qpoy — C_lnfl.,v - dn,v+1 + a477.71,714»1

(41) = 0Opy — An—1,0
by (1.8) and (1.9), we have

n—1

n—1
Z ‘Av(&nv” = Z(anflyu - an'u) < Ann
v=1

v=1

237
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by using (1.8), (3.1) and (3.2). Hence, we get

m+1 P k—1 . m+1 P k—1
Z(p") Mol ZIA F e S (p) G5 Ay ()|

n n

n=2 n=v+1
m—+1
k ~
1)Z|Av||tv| ST 1A (@) -
v=1 n=v+1
Now, using (3.2) and (4.1), we obtain
m+1 m+1
Z |AU(&7W)‘ = Z (an—l,v - anv) < Gy,
n=v+1 n=v+1

then

m4+1 P k—1 m
k k
3 () Mal® = 0(1) S Aol o]
v=1

o \Pn
m Do
1 )\1) tvki
DI

=0(1) as m — oo,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Also, we have

m+1 k—1 m+1 k—1|n—1 k
P, P, 1
Z () |J\4'n,3|lC = Z () Z vt (ln v+1A>\ t
n=2 Dn n=2 Pn v=1
m+1 k
= O(]_) ( n,v+1|A>\v|tv|>

> a
=1
m+1 1 k
(Z an,v+1|Av||tv>
pTL
m+1
(Z an,v+1|Av||tvk>
pTL —1
-1

x (Z |&n,v+1|Av|>
v=1

m m+1
1) Z |A’U||tv|k Z ‘&n,erl .
v=1 n=v+1

By (1.8), (1.9), (3.1) and (3.2), we obtain

v

|&n,v+1| = Z(an—l,i - ani)-

1=0
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Thus, using (1.8) and (3.1), we have

m—+1 m—+1 v
Z |&n7'u+1| = Z Z(anfl,i - ani) < 1;
n=v-+1 n=v+1 i=0
then we get
m—+1 P k—1 . m m 1
> (55) Ial = 0m S jA bl =00 3ol el
n=2 Pn v=1 v=1
m—1 v m
1 1
=0(1) Y A4 ) ;\tr\k +O0()m|Ap| Y ;\Mk
v=1 r=1 v=1
m—1 m—1
= O(l) Z U|AAU|XU + O(l) Z |AU|XU + O(l)m|Am‘Xm
v=1 v=1

=0(1) as m — oo,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3. Again, operating
Holder’s inequality, we have

k
m-+1 k—1 m—+1 k—1 /n—1
Pn P’n. A t?)
S (B) sy (2) (Z |an,v+1||xv+1|'v>
n=2 v=1

= \n Pn

mtl o\ k=1 /il it |*
< —= 7 A Y
<y (&) (Z marral o 2 )

= 0(1) |AU+1|X’U+1 +O(1)|A7n+1|Xm+1

=0(1) as m— oo,
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by (2.1), (2.2), (3.3) and (3.4). This completes the proof of Theorem 3.1. O
If we take a,, = g—v in this theorem, then we get Theorem 2.1. If we take

Opp = %’; and p, = 1 for all values of n, then we get a result for |C, 1|, summabil-

ity.
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