KYUNGPOOK Math. J. 59(2019), 233-240 https://doi.org/10.5666/KMJ.2019.59.2.233 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

An Application of Absolute Matrix Summability using Almost Increasing and δ -quasi-monotone Sequences

HIKMET SEYHAN ÖZARSLAN

Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey e-mail: seyhan@erciyes.edu.tr and hseyhan380gmail.com

ABSTRACT. In the present paper, absolute matrix summability of infinite series is studied. A new theorem concerning absolute matrix summability factors, which generalizes a known theorem dealing with absolute Riesz summability factors of infinite series, is proved using almost increasing and δ -quasi-monotone sequences. Also, a result dealing with absolute Cesàro summability is given.

1. Introduction

A positive sequence (v_n) is said to be almost increasing if there exists a positive increasing sequence (c_n) and two positive constants K and L such that $Kc_n \leq v_n \leq Lc_n$ (see [1]). A sequence (y_n) is said to be δ -quasi-monotone, if $y_n \to 0, y_n > 0$ ultimately and $\Delta y_n \geq -\delta_n$, where $\Delta y_n = y_n - y_{n+1}$ and $\delta = (\delta_n)$ is a sequence of positive numbers (see [2]). Let $\sum a_n$ be a given infinite series with partial sums (s_n) . By (u_n) and (t_n) we denote the n-th (C, 1) means of the sequences (s_n) and (na_n) , respectively. The series $\sum a_n$ is said to be $|C, 1|_k$ summable, $k \geq 1$, if (see [6], [8])

(1.1)
$$\sum_{n=1}^{\infty} n^{k-1} |u_n - u_{n-1}|^k = \sum_{n=1}^{\infty} \frac{1}{n} |t_n|^k < \infty.$$

Let (p_n) be a sequence of positive numbers such that

(1.2)
$$P_n = \sum_{v=0}^n p_v \to \infty \quad as \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, \quad i \ge 1).$$

Received October 31, 2017; revised August 9, 2018; accepted August 13, 2018. 2010 Mathematics Subject Classification: 26D15, 40D15, 40F05, 40G99. Key words and phrases: summability factors, almost increasing sequences, absolute matrix summability, quasi-monotone sequences, infinite series, Hölder inequality, Minkowski inequality. The sequence-to-sequence transformation

(1.3)
$$z_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v$$

defines the sequence (z_n) of the Riesz mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) (see [7]). The series $\sum a_n$ is said to be $|\bar{N}, p_n|_k$ summable, $k \ge 1$, if (see [3])

(1.4)
$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |\Delta z_{n-1}|^k < \infty,$$

where

$$\Delta z_{n-1} = -\frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v, \quad n \ge 1.$$

Let $A = (a_{nv})$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s = (s_n)$ to $As = (A_n(s))$, where

(1.5)
$$A_n(s) = \sum_{i=0}^n a_{ni} s_i, \quad n = 0, 1, \dots$$

The series $\sum a_n$ is said to be $|A, p_n|_k$ summable, $k \ge 1$, if (see [9])

(1.6)
$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |\bar{\Delta}A_n(s)|^k < \infty,$$

where

(1.7)
$$\overline{\Delta}A_n(s) = A_n(s) - A_{n-1}(s).$$

When we take $a_{nv} = \frac{p_v}{P_n}$, then $|A, p_n|_k$ summability is the same as $|\bar{N}, p_n|_k$ summability. Also, when we take $a_{nv} = \frac{p_v}{P_n}$ and $p_n = 1$ for all values of n, $|A, p_n|_k$ reduces to $|C, 1|_k$ summability.

Let $A = (a_{nv})$ be a normal matrix. Lower semimatrices $\bar{A} = (\bar{a}_{nv})$ and $\hat{A} = (\hat{a}_{nv})$ are defined as follows:

(1.8)
$$\bar{a}_{nv} = \sum_{i=v}^{n} a_{ni}, \quad n, v = 0, 1, \dots$$

and

(1.9)
$$\hat{a}_{00} = \bar{a}_{00} = a_{00}, \quad \hat{a}_{nv} = \bar{a}_{nv} - \bar{a}_{n-1,v}, \quad n = 1, 2, \dots$$

 \overline{A} and \widehat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we write

(1.10)
$$A_n(s) = \sum_{i=0}^n a_{ni} s_i = \sum_{i=0}^n \bar{a}_{ni} a_i$$

and

(1.11)
$$\bar{\Delta}A_n(s) = \sum_{i=0}^n \hat{a}_{ni}a_i.$$

2. Known Result

In [4, 5], the following theorem dealing with $|\bar{N}, p_n|_k$ summability factors of infinite series has been proved by Bor.

Theorem 2.1. Let (X_n) be an almost increasing sequence such that $|\Delta X_n| = O(X_n/n)$ and $\lambda_n \to 0$ as $n \to \infty$. Suppose that there exists a sequence of numbers (A_n) such that it is δ -quasi-monotone with $\sum nX_n\delta_n < \infty$, $\sum A_nX_n$ is convergent and $|\Delta \lambda_n| \leq |A_n|$ for all n. If

(2.1)
$$\sum_{n=1}^{m} \frac{1}{n} |\lambda_n| = O(1) \quad as \qquad m \to \infty,$$

(2.2)
$$\sum_{n=1}^{m} \frac{1}{n} |t_n|^k = O(X_m) \quad as \qquad m \to \infty,$$

and

(2.3)
$$\sum_{n=1}^{m} \frac{p_n}{P_n} |t_n|^k = O(X_m) \quad as \qquad m \to \infty,$$

then the series $\sum a_n \lambda_n$ is $|\bar{N}, p_n|_k$ summable, $k \ge 1$.

3. Main Result

The aim of this paper is to prove following more general theorem dealing with $|A, p_n|_k$ summability.

Theorem 3.1. Let $A = (a_{nv})$ be a positive normal matrix such that

$$(3.1) \qquad \bar{a}_{n0} = 1, \quad n = 0, 1, ...,$$

$$(3.2) a_{n-1,v} \ge a_{nv}, \quad for \quad n \ge v+1,$$

H. S. Özarslan

(3.3)
$$a_{nn} = O\left(\frac{p_n}{P_n}\right).$$

If all conditions of Theorem 2.1 are satisfied, then the series $\sum a_n \lambda_n$ is $|A, p_n|_k$ summable, $k \ge 1$.

Lemma 3.2. ([4]) Under the conditions of Theorem 3.1, we have

$$(3.4) \qquad |\lambda_n| X_n = O(1) \quad as \quad n \to \infty.$$

Lemma 3.3.([5]) Let (X_n) be an almost increasing sequence such that $n \mid \Delta X_n \mid = O(X_n)$. If (A_n) is a δ -quasi monotone with $\sum nX_n\delta_n < \infty$, and $\sum A_nX_n$ is convergent, then

$$(3.5) nA_n X_n = O(1) as n \to \infty,$$

(3.6)
$$\sum_{n=1}^{\infty} nX_n \mid \Delta A_n \mid < \infty.$$

4. Proof of Theorem 3.1

Let (M_n) denotes A-transform of the series $\sum a_n \lambda_n$. Then, by (1.10) and (1.11), we have

$$\bar{\Delta}M_n = \sum_{v=0}^n \hat{a}_{nv} a_v \lambda_v = \sum_{v=1}^n \frac{\hat{a}_{nv} \lambda_v}{v} v a_v.$$

Applying Abel's transformation to above sum, we get

$$\bar{\Delta}M_n = \sum_{v=1}^{n-1} \Delta_v \left(\frac{\hat{a}_{nv}\lambda_v}{v}\right) \sum_{r=1}^v ra_r + \frac{\hat{a}_{nn}\lambda_n}{n} \sum_{r=1}^n ra_r$$
$$= \frac{n+1}{n} a_{nn}\lambda_n t_n + \sum_{v=1}^{n-1} \frac{v+1}{v} \Delta_v \left(\hat{a}_{nv}\right) \lambda_v t_v$$
$$+ \sum_{v=1}^{n-1} \frac{v+1}{v} \hat{a}_{n,v+1} \Delta \lambda_v t_v + \sum_{v=1}^{n-1} \hat{a}_{n,v+1} \lambda_{v+1} \frac{t_v}{v}$$
$$= M_{n,1} + M_{n,2} + M_{n,3} + M_{n,4}.$$

To prove Theorem 3.1, we will show that

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |M_{n,r}|^k < \infty, \quad for \quad r = 1, 2, 3, 4.$$

236

First, by using (2.3), (3.3) and (3.4), we have

$$\begin{split} \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{k-1} |M_{n,1}|^k &= \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{k-1} \left|\frac{n+1}{n} a_{nn} \lambda_n t_n\right|^k \\ &= O(1) \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{k-1} a_{nn}^k |\lambda_n|^k |t_n|^k \\ &= O(1) \sum_{n=1}^{m} \frac{p_n}{P_n} |\lambda_n|^{k-1} |\lambda_n| |t_n|^k \\ &= O(1) \sum_{n=1}^{m} \frac{p_n}{P_n} |\lambda_n| |t_n|^k \\ &= O(1) \sum_{n=1}^{m-1} \Delta |\lambda_n| \sum_{r=1}^{n} \frac{p_r}{P_r} |t_r|^k + O(1) |\lambda_m| \sum_{n=1}^{m} \frac{p_n}{P_n} |t_n|^k \\ &= O(1) \sum_{n=1}^{m-1} |\Delta\lambda_n| X_n + O(1) |\lambda_m| X_m \\ &= O(1) \sum_{n=1}^{m-1} |A_n| X_n + O(1) |\lambda_m| X_m \\ &= O(1) \sum_{n=1}^{m-1} |A_n| X_n + O(1) |\lambda_m| X_m \end{split}$$

Now, as in $M_{n,1}$, we have

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |M_{n,2}|^k = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| |\lambda_v| |t_v|\right)^k$$
$$= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| |\lambda_v|^k |t_v|^k\right)$$
$$\times \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})|\right)^{k-1}.$$

Since

(4.1)

$$\begin{aligned}
\Delta_v(\hat{a}_{nv}) &= \hat{a}_{nv} - \hat{a}_{n,v+1} \\
&= \bar{a}_{nv} - \bar{a}_{n-1,v} - \bar{a}_{n,v+1} + \bar{a}_{n-1,v+1} \\
&= a_{nv} - a_{n-1,v}
\end{aligned}$$

by (1.8) and (1.9), we have

$$\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| = \sum_{v=1}^{n-1} (a_{n-1,v} - a_{nv}) \le a_{nn}$$

H. S. Özarslan

by using (1.8), (3.1) and (3.2). Hence, we get

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |M_{n,2}|^k = O(1) \sum_{v=1}^m |\lambda_v|^{k-1} |\lambda_v| |t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} a_{nn}^{k-1} |\Delta_v(\hat{a}_{nv})|$$
$$= O(1) \sum_{v=1}^m |\lambda_v| |t_v|^k \sum_{n=v+1}^{m+1} |\Delta_v(\hat{a}_{nv})|.$$

Now, using (3.2) and (4.1), we obtain

$$\sum_{n=v+1}^{m+1} |\Delta_v(\hat{a}_{nv})| = \sum_{n=v+1}^{m+1} (a_{n-1,v} - a_{nv}) \le a_{vv},$$

then

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |M_{n,2}|^k = O(1) \sum_{v=1}^m |\lambda_v| |t_v|^k a_{vv}$$
$$= O(1) \sum_{v=1}^m |\lambda_v| |t_v|^k \frac{p_v}{P_v}$$
$$= O(1) \quad as \quad m \to \infty,$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Also, we have

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |M_{n,3}|^k &= \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left|\sum_{v=1}^{n-1} \frac{v+1}{v} \hat{a}_{n,v+1} \Delta \lambda_v t_v \right|^k \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\Delta \lambda_v| |t_v|\right)^k \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |A_v| |t_v|^k\right)^k \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |A_v| |t_v|^k\right) \\ &\times \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |A_v|\right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |A_v| |t_v|^k \sum_{n=v+1}^{m+1} |\hat{a}_{n,v+1}|. \end{split}$$

By (1.8), (1.9), (3.1) and (3.2), we obtain

$$|\hat{a}_{n,v+1}| = \sum_{i=0}^{v} (a_{n-1,i} - a_{ni}).$$

238

Thus, using (1.8) and (3.1), we have

$$\sum_{n=v+1}^{m+1} |\hat{a}_{n,v+1}| = \sum_{n=v+1}^{m+1} \sum_{i=0}^{v} (a_{n-1,i} - a_{ni}) \le 1,$$

then we get

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |M_{n,3}|^k &= O(1) \sum_{v=1}^m |A_v| |t_v|^k = O(1) \sum_{v=1}^m v |A_v| \frac{1}{v} |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} \Delta(v |A_v|) \sum_{r=1}^v \frac{1}{r} |t_r|^k + O(1)m |A_m| \sum_{v=1}^m \frac{1}{v} |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta A_v| X_v + O(1) \sum_{v=1}^{m-1} |A_v| X_v + O(1)m |A_m| X_m \\ &= O(1) \quad as \quad m \to \infty, \end{split}$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3. Again, operating Hölder's inequality, we have

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |M_{n,4}|^k &\leq \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\lambda_{v+1}| \frac{|t_v|^k}{v}\right)^k \\ &\leq \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\lambda_{v+1}| \frac{|t_v|^k}{v}\right) \\ &\qquad \times \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| \frac{|\lambda_{v+1}|}{v}\right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} \frac{|\lambda_{v+1}|}{v} |t_v|^k \sum_{n=v+1}^{m+1} |\hat{a}_{n,v+1}| \\ &= O(1) \sum_{v=1}^{m} \frac{|\lambda_{v+1}|}{v} |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} \Delta |\lambda_{v+1}| \sum_{r=1}^{v} \frac{1}{r} |t_r|^k + O(1) |\lambda_{m+1}| \sum_{v=1}^{m} \frac{1}{v} |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} |\Delta_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{v+1}| X_{v+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{v+1}| X_{v+1} \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |X_{v+1}| \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |X_{v+1}| X_{v+1} \\ &= O(1) \sum_{v=1}^{m-1} |X_{v+1}| X_{v$$

by (2.1), (2.2), (3.3) and (3.4). This completes the proof of Theorem 3.1.

If we take $a_{nv} = \frac{p_v}{P_n}$ in this theorem, then we get Theorem 2.1. If we take $a_{nv} = \frac{p_v}{P_n}$ and $p_n = 1$ for all values of n, then we get a result for $|C, 1|_k$ summability.

References

- N. K. Bari and S. B. Stečkin, Best approximations and differential proprerties of two conjugate functions, Tr. Mosk. Mat. Obs., 5(1956), 483–522.
- [2] R. P. Boas, Quasi-positive sequences and trigonometric series, Proc. London Math. Soc. (3), 14a(1965), 38–46.
- [3] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc., 97(1985), 147–149.
- [4] H. Bor, An application of almost increasing and δ-quasi-monotone sequences, JIPAM.
 J. Inequal. Pure Appl. Math., 1(2)(2000), Article 18, 6 pp.
- [5] H. Bor, Corrigendum on the paper "An application of almost increasing and δ-quasimonotone sequences", JIPAM. J. Inequal. Pure Appl. Math., 3(1)(2002), Article 16, 2 pp.
- [6] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7(1957), 113–141.
- [7] G. H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.
- [8] E. Kogbetliantz, Sur les séries absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math., 49(1925), 234–256.
- [9] W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV, Indian J. Pure Appl. Math., 34(11)(2003), 1547–1557.