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Abstract. The commutativity degree of a finite group is the probability that two ran-

domly chosen group elements commute. In this paper we give a sharp upper bound of

commutativity degree of nonabelial groups in terms of their order.

1. Introduction

The commutativity degree of a finite group is the probability that two randomly
chosen group elements commute. In the other words, the commutativity degree of
a finite group G is the ratio

cp(G) =
|{(x, y) ∈ G×G : [x, y] = 1}|

|G|2
.

It is easy to see that cp(G) =
∑

x∈G |CG(x)|
|G|2 where CG(x) is the centralizer of x in G.

Also G is abelian if and only if cp(G) = 1.
During the last few decades, there has been a growing interest in the study of

finite groups in terms of their commutativity degree. This ratio has been investi-
gated by many authors. For example, Gustafson in [4] showed cp(G) ≤ 5

8 for all
non-abelian groups G. Lescot, in [6], determined all groups G with cp(G) ≥ 1

2 .
Guranlik and G. R. Robinson considered all groups with cp(G) > 3

40 and proved
that such groups are either solvable or are isomorphic to A5 ×Cn

2 where n ≥ 1 (see
[3]). Another results about cp(G) can be found in [1] and [9].

Our result is as follows.

Theorem 1.1. Let G be a non-abelian group of order n = pn1
1 pn2

2 · · · pnr
r where

ni > 0 for each i and p1, · · · , pr are distinct primes. Then
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(1) cp(G) ≤ p2+p−1
p3 and the equality holds if and only if G

Z(G)
∼= Zp ×Zp where p

is the smallest prime divisor of | G
Z(G) |.

(2) Let G be a non-nilpotent group. Then

cp(G) ≤ max{
ptii + p2j − 1

ptii p
2
j

: pj |ptii − 1, 1 ≤ i, j ≤ r, 1 ≤ ti ≤ ni}.

and the equality holds if and only if G
Z(G)

∼= Zti
pi

o Zpj for integers i and j

such that pj |ptii − 1 and 1 ≤ ti ≤ ni.

First part of above theorem generalizes Lemma 1.3 of [5] and the second part
generalizes a result of Lescot which can be found in [5].

Throughout the paper all groups are finite and p is a prime. Also, for g ∈ G,

we often use g to denote the coset gZ(G), and use H for the factor group HZ(G)
Z(G)

where H is any subgroup of G. Other notation is standard and can be found in [8].

2. Results

A minimal non-abelin group is a non-abelian group all of whose subgroups are
abelian. Following lemma gives an important property of minimal non-abelian p-
groups. It will be used in the proof of Lemma 2.2.

Lemma 2.1. Let G be a minimal non-abelian p- group. Then G
Z(G)

∼= Zp × Zp.

Proof. Since G is non-abelian, there exist two elements x and y such that
xy ̸= yx. Therefore CG(x) and CG(y) are two distinct centralizers of G. By
hypothesis these centralizers are abelian and have index p. On the other hand if
t ∈ (CG(x)

∩
CG(y)) \Z(G) then CG(t) = CG(x) = CG(y). This is a contradiction.

Thus CG(x) ∩ CG(y) = Z(G) and so G
Z(G)

∼= Zp × Zp as a desired. 2

Using the above lemma and Theorem 10.1.7 of [8] and Exercise 9.1.11 of [8],
we can say that every non-abelian group contains either a minimal non-abelian p-
subgroup or a subgroup with Frobenius central factor. The following lemma play
an important role in the proof of our main theorem.

Lemma 2.2. Let G be a group. If G is non-abelian, then G contains a subgroup H
such that either H

Z(H)
∼= Zt

r o Zq or Zp × Zp where p, q and r are distinct primes.

Proof. Towards contradiction, let G be a counter-example of minimal order. If H
is a non-abelian subgroup of G, then it, and consequently G, has a subgroup with
the desired structure. So we may assume that G is a minimal non-abelian group.
Using Theorem 10.1.7 of [8] and Exercise 9.1.11 of [8] and Lemma 2.1 we get a
contradiction. 2

The following lemma, which will be used in prove of Theorem 1.1, gives some
relations between commutativity degree of certain groups and their sections and
subgroups.
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Lemma 2.3. Let G be a finite group.

(1) For every proper subgroup H of G, we have cp(G) ≤ cp(H).

(2) Whenever N �G, we have cp(G) ≤ cp(GN ).

(3) For every section, X, of G, we have cp(G) ≤ cp(X).

Proof. See proof of Lemma 2 of [3]. 2

Lemma 2.4. Let G be a non-abelian group.

(1) If G
Z(G)

∼= Zt
p o Zq, then cp(G) = pt+q2−1

ptq .

(2) If G
Z(G)

∼= Zp × Zp, then cp(G) = p2+p−1
p3 .

Proof. Let G be a non abelian group and G
Z(G)

∼= Zt
p o Zq. Since H

Z(H) has an

abelian subgroup of index q, Theorem A of [2] tells us that G is a Frobenius group.
Now, all centralizers of G are either of order q or pt. By counting all of them and
using the definition we get the result in first case.

Now let G be a group with central factor isomorphic to Zp×Zp. It is clear that
all centralizers of noncentral elements of G are abelian of index p. So as a result we
have

cp(G) =
(|G| − |Z(G)|( |G|

p )) + |G|2
p2

|G|2
=

p2 + p− 1

p3
. 2

Now we recall a nilpotent number defined in [7].

Definition 2.5. A positive integer n is called a nilpotent number if every group of
order n is nilpotent.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. It is clear that there is at least one non-abelian group G of
order n such that p is the smallest prime divisor of | G

Z(G) |. We denote some p-sylow

subgroup of G by P . First we suppose that P is non-abelian and thus all Sylow
p-subgroups P of G are non-abelian. By Lemma 2.2, P contains some minimal non
abelian subgroup. Therefore by Lemma 2.3 and Lemma 2.4 we have the result in

first case. Now let cp(G) = p2+p−1
p3 but G

Z(G) be not isomorphic to Zp × Zp. Then

by Lemmas 2.2, 2.3 and 2.4 we have a contradiction. Now if G
Z(G)

∼= Zp × Zp, then

Lemma 2.4 gives the result in first case.
Now let G be a non-nilpotent group. Thus n is not a nilpotent number and so

there are positive integers r and s such that r|si − 1 for some integer i. Also let

Υ = {(r, s)|r ̸= s are primes, r|si − 1 but r - sj − 1 for all integers j < i}.
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Put also Γ = { rt+s2−1
rts2 |(r, s) ∈ Υ}. We know by [7] that Υ and so Γ are non-empty.

Now we choose (p, q) ∈ Υ such that qα+p2−1
qαp2 is a maximum element of Γ. We now

define a group H.
It is well known that Aut(Zi

q)
∼= PGLi(q) and so

|Aut(Zi
q)| = (qi − q)(qi − q) · · · (qi − qi−1).

Therefore there is some θ ∈ Aut(Zi
q) with |θ| = q. Let

ι : Zp → Aut(Zi
q)

be a group homomorphism such that ι(a) = θ and Zp = ⟨a⟩. Now Zi
q o Zp is a

semidirect group with respect to ι and we denote Zi
q o Zp ×A by H in which A is

abelian group with |A| = n
qip . By Lemma 2.4, we have cp(H) = qi+p2−1

qip .

Now we prove that for all non-nilpotent groups G of order n, cp(G) ≤ pi+q2−1
piq .

If all proper subgroups of G are nilpotent, then using Theorem 10.1.7 of [8] and
Exercise 9.1.11 of [8] one can see that G

Z(G) is Frobenius group whose Frobenius

kernel is elementary abelian and whose Frobenius complement is of prime order.
Now assume that G contains at least one proper non-nilpotent subgroup. Therefore
by Lemma 2.2, G has a proper subgroup whose central factor is a Frobenius group
with elementary abelian Frobenius kernel and cyclic Frobenius complement of prime
order. Anyway, we can assume that K is a subgroup of G (perhaps G itself ) such
that K

Z(K)
∼= Zt

r o Zs where r, s are distinct primes and t is an positive integer. By

Lemma 2.3, cp(G) ≤ cp( K
Z(K) ) = rt+s2−1

rts2 . But by choosing (p, q) ∈ Υ, we have

cp(G) ≤ cp(H) and proof is complete. 2

In the above theorem, if |G| is even, then we have the following.

Corollary 2.6. Let G be a non- nilpotent group of order n. Then cp(G) ≤ p+3
4p

and equality holds if and only if G
Z(G)

∼= D2p.
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