DOI QR코드

DOI QR Code

Bearing capacity of foundation on rock mass depending on footing shape and interface roughness

  • Alencar, Ana S. (ETSI Caminos, C. y P., Technical University of Madrid (UPM)) ;
  • Galindo, Ruben A. (ETSI Caminos, C. y P., Technical University of Madrid (UPM)) ;
  • Melentijevic, Svetlana (Faculty of Geology, Complutense University of Madrid (UCM))
  • Received : 2019.03.05
  • Accepted : 2019.07.01
  • Published : 2019.07.20

Abstract

The aim of this paper was to study the influence of the footing shape and the effect of the roughness of the foundation base on the bearing capacity of shallow foundations on rock masses. For this purpose the finite difference method was used to analyze the bearing capacity of various types and states of rock masses under the assumption of Hoek-Brown failure criterion, for both plane strain and axisymmetric model, and considering smooth and rough interface. The results were analyzed based on a sensitivity study of four varying parameters: foundation width, rock material constant (mo), uniaxial compressive strength and geological strength index. Knowing how each parameter influences the bearing capacity depending on the footing shape (circular vs strip footing) and the footing base interface roughness (smooth vs rough), two correlation factors were developed to estimate the percentage increase of the ultimate bearing capacity as a function of the footing shape and the roughness of the footing base interface.

Keywords

Acknowledgement

Supported by : Jose Entrecanales Ibarra Foundation

References

  1. Anil, O., Akbas, S. O., Babagiray, S., Gel, A.C. and Durucan, C. (2017), "Experimental and finite element analyses of footings of varying shapes on sand", Geomech. Eng., 12(2), 223-238. https://doi.org/10.12989/gae.2017.12.2.223.
  2. Barton, N. (1973), "Review of a new shear-strength criterion for rock joints", Eng. Geol., 7(4), 287-332. https://doi.org/10.1016/0013-7952(73)90013-6.
  3. Barton, N. and Choubey, V. (1977), "The shear strength of rock joints in theory and practice", Rock Mech., 10(1-2), 1-65. https://doi.org/10.1007/BF01261801.
  4. Benmebarek, S., Saifi, I. and Benmebarek, N. (2017), "Depth factors for undrained bearing capacity of circular footing by numerical approach", J. Rock Mech. Geotech. Eng., 9(4), 761-766. https://doi.org/10.1016/j.jrmge.2017.01.003.
  5. Brinch Hansen, J.A. (1970), "Revised and extended formula for bearing capacity" Bulletin No. 28. Danish Geotechnical Institute Copenhagen, Denmark, 5-11.
  6. Carter, J.P. and Kulhawy, F.H. (1988), "Analysis and design of foundations socketed into rock", Report No. EL-5918, Empire State Electric Engineering Research Corporation and Electric Power Research Institute, New York, U.S.A., 158.
  7. Chakraborty, M. and Kumar, J. (2015), "Bearing capacity of circular footings over rock mass by using axisymmetric quasi lower bound finite element limit analysis", Comput. Geotech., 70, 138-149. https://doi.org/10.1016/j.compgeo.2015.07.015.
  8. Clausen, J. (2013), "Bearing capacity of circular footings on a Hoek-Brown material", Int. J. Rock Mech. Min. Sci., 57, 34-41. https://doi.org/10.1016/j.ijrmms.2012.08.004.
  9. De Beer, E.E. (1970), "Experimental determination of the shape factors and the bearing capacity factors of sand", Geotechnique, 20(4), 387-411. https://doi.org/10.1680/geot.1970.20.4.387.
  10. Du, S., Gao, H., Hu, Y., Huang, M. and Zhao, H. (2015), "A new method for determination of joint roughness coefficient of rock joints", Math. Prob. Eng., 1-6. https://doi.org/10.1155/2015/634573.
  11. FLAC (2007), User's Manual, Itasca Consulting Group Inc., Minneapolis, Minnesota, U.S.A.
  12. Ghosh, A.K. (2010), "Shear strength of dam-foundations rock interface-a case study", Proceedings of the Indian Geothecnical Conference, Mumbai, India, December.
  13. Gutierrez-Ch, J.G., Senent, S., Melentijevic, S. and Jimenez, R. (2018), "Distinct element method simulations of rock-concrete interfaces under different boundary conditions", Eng. Geol., 240, 123-139. https://doi.org/10.1016/j.enggeo.2018.04.017.
  14. Hjiaj, M., Lyamin, A.V. and Sloan, S.W. (2005), "Numerical limit analysis solutions for the bearing capacity factor $N{\gamma}$", Int. J. Solids Struct., 42(5-6), 1681-1704. https://doi.org/10.1016/j.ijsolstr.2004.08.002.
  15. Hoek, E. and Brown, E.T. (1980), "Empirical strength criterion for rock masses", J. Geotech. Eng. Div., 106(9), 1013-1035. https://doi.org/10.1061/AJGEB6.0001029
  16. Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
  17. Jahanandish M., Veiskarami, M. and Ghahramani, A. (2012), "Effect of foundation size and roughness on the bearing capacity factor, $N{\gamma}$, by stress level-based ZEL method", Arab. J. Sci. Eng., 37(7), 1817-1831. https://doi.org/10.1007/s13369-012-0293-3.
  18. Jeong, S., Ahn, S. and Seol, H. (2010), "Shear load transfer characteristics of drilled shafts socketed in rocks", Rock Mech. Rock Eng., 43(1), 41-54. https://doi.org/10.1007/s00603-009-0026-4
  19. Keshavarz, A. and Kumar, J. (2018), "Bearing capacity of foundations on rock mass using the method of characteristics", Int. J. Numer. Anal. Meth. Geomech., 42(3), 542-557. https://doi.org/10.1002/nag.2754.
  20. Krounis, A., Johansson, F. and Larsson, S. (2016), "Shear strength of partially bonded concrete-rock interfaces for application in dam stability analyses", Rock Mech. Rock Eng., 49(7), 2711-2722. https://doi.org/10.1007/s00603-016-0962-8.
  21. Lo, K.Y., Lukajic, B., Wang, S., Ogawa, T. and Tsui, K.K. (1990), "Evaluation of strength parameters of concrete-rock interface for dam safety assessment", Proceedings of the Canadian Dam Safety Conference, Toronto, Canada, September.
  22. Lo, K.Y., Ogawa, T., Lukajic, B. and Dupak, D.D. (1991), "Measurement of strength parameters of concrete-rock contact at the dam foundation interface", Geotech. Test. J., 14(4), 383-394. https://doi.org/10.1520/GTJ10206J.
  23. Maleki, H. and Hollberg, K., (1995), "Structural stability assessment through measurements", Proceedings of the ISRM International Workshop on Rock Foundations, Tokyo, Japan, September.
  24. Melentijevic, S. and Olalla, C. (2014), "Different FEM models for simulation of the Osterberg load test in rock shafts", Proceedings of the ISRM Regional Symposium EUROCK 2014, Vigo, Spain, May.
  25. Merifield, R.S., Lyamin, A.V. and Sloan, S.W. (2006), "Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 43(6), 920-937. https://doi.org/10.1016/j.ijrmms.2006.02.001.
  26. Meyerhof, G.G. (1955), "Influence of roughness of base and ground-water conditions on the ultimate bearing capacity of foundations", Geotechnique, 5(3), 227-242. https://doi.org/10.1680/geot.1955.5.3.227.
  27. Meyerhof, G.G. (1963), "Some recent research on the bearing capacity of foundations", Can. Geotech. J., 1(1), 16-26. https://doi.org/10.1139/t63-003.
  28. Mouzannar, H., Bost, M., Leroux, M. and Virely, D. (2017), "Experimental study of the shear strength of bonded concrete-rock interfaces: Surface morphology and scale effect", Rock Mech. Rock Eng., 50(10), 2601-2625. https://doi.org/10.1007/s00603-017-1259-2.
  29. Nam, M.S. and Vipulanandan, C. (2008), "Roughness and unit side resistances of drilled shafts socketed in clay shale and limestone", J. Geotech. Geoenviron. Eng., 134(9), 1272-1279. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:9(1272).
  30. Nitta, A., Yamamoto, S., Sonoda, T. and Husono, T. (1995), "Bearing capacity of soft rock foundation on in-situ bearing capacity tests under inclined load." Proceedings of the ISRM International Workshop on Rock Foundations, Tokyo, Japan, September.
  31. Pellegrino, A. (1974), "Surface footings on soft rocks", Proceedings of the 3rd Congress of the International Society for Rock Mechanics, Denver, Colorado, U.S.A., September.
  32. Pells, P.J.N. and Turner, R.M. (1979), "Elastic solutions for the design and analysis of rocksocketed piles", Can. Geotech. J., 16(3), 481-487. https://doi.org/10.1139/t79-054.
  33. Pells, P.J.N., Rowe, R.K. and Turner, R.M. (1980), "An experimental investigation into side shear for socketed piles in sandstone", Proceedings of the International Conference on Structural Foundations on Rock, Sydney, Australia, May.
  34. Ramamurthy, T. (2014), Engineering in Rocks for Slopes Foundations and Tunnels, PHI Learning, Delhi, India.
  35. Rowe, R.K. and Armitage, H.H. (1984), "The design of piles socketed into weak rock", Report GEOT-11-84, University of Western Ontario, London, Canada.
  36. Samanta, M., Punetha, P. and Sharma, M. (2018), "Effect of roughness on interface shear behavior of sand with steel and concrete surface", Geomech. Eng., 14(4), 387-398. https://doi.org/10.12989/gae.2018.14.4.387.
  37. Seidel, J.P. and Collingwood, B. (2001), "A new socket roughness factor for prediction of rock socket shaft resistance", Can. Geotech. J., 38(1), 138-153. https://doi.org/10.1139/t00-083.
  38. Serrano, A., Olalla, C. and Gonzalez, J. (2000), "Ultimate bearing capacity of rock masses based on the modified Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 37(6), 1013-1018. https://doi.org/10.1016/S1365-1609(00)00028-9.
  39. Sokolovskii, V.V. (1965), Statics of Soil Media, Butterworths Science, London, U.K.
  40. Spanovich, M. and Garvin, R.G. (1979), Field Evaluation of Caisson-Shale Interaction, in Behavior of Deer, Foundations (STP 670), ASTM, 537-557.
  41. Tajeri, S., Sadrossadat, E. and Bazaz, J.B. (2015), "Indirect estimation of the ultimate bearing capacity of shallow foundations resting on rock masses", Int. J. Rock Mech. Min. Sci., 80, 107-117, https://doi.org/10.1016/j.ijrmms.2015.09.015.
  42. Terzaghi, K. (1943), Theoretical Soil Mechanics, Wiley, New York, U.S.A.
  43. Tikou, B. (2016), "Quantitative parameters of primary roughness for describing the morphology of surface discontinuities at various scales", Geomech. Eng., 11(4), 515-530. https://doi.org/10.12989/gae.2016.11.4.515.
  44. Tse, R. and Cruden, D.M. (1979), "Estimating joint roughness coefficients", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 16(5), 303-307. https://doi.org/10.1016/0148-9062(79)90241-9.
  45. Vesic, A.S. (1973), "Analysis of ultimate loads of shallow foundations", J. Soil Mech. Found. Div., 99, 45-73. https://doi.org/10.1061/JSFEAQ.0001846
  46. Williams, A.F. (1980), "Design and performance of piles socketed into weak rock", Ph.D. Dissertation, Monash University, Melbourne, Australia.

Cited by

  1. A caving self-stabilization bearing structure of advancing cutting roof for gob-side entry retaining with hard roof stratum vol.21, pp.1, 2019, https://doi.org/10.12989/gae.2020.21.1.023
  2. Application of Artificial Neural Networks for Predicting the Bearing Capacity of Shallow Foundations on Rock Masses vol.54, pp.9, 2021, https://doi.org/10.1007/s00603-021-02549-1
  3. Influence of the groundwater level on the bearing capacity of shallow foundations on the rock mass vol.80, pp.9, 2021, https://doi.org/10.1007/s10064-021-02368-2