DOI QR코드

DOI QR Code

Current Control for an AFE Rectifier Using Space Vector PWM

공간벡터변조방식에 의한 AFE정류기의 전류제어

  • Jeon, Cheol-Hwan (Division of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Hur, Jae-Jung (Korea Institute of Maritime and Fisheries Technology) ;
  • Yoon, Kyoung-Kuk (Ulsan Campus Of Korea Polytechnic) ;
  • Yoo, Heui-Han (Division of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Kim, Sung-Hwan (Division of Marine System Engineering, Korea Maritime and Ocean University)
  • Received : 2019.05.07
  • Accepted : 2019.06.27
  • Published : 2019.06.30

Abstract

Electric propulsion ships are gaining widespread interest in the marine industry owing to extreme air pollution concerns. Consequently, several studies are actively being conducted for improving the power quality. Various methods have been developed that incorporate passive filters, notch filters, and active filters for reducing the harmonic content in the input current of a conventional diode front end rectifier. Among such filters, the active front end (AFE) rectifier is considered as an excellent technology. In this paper, current control for an AFE rectifier employing space vector PWM (Pulse Width Modulation) is proposed. Conventional current control methods for the AFE rectifier, hysteresis, SPWM (Sinusoidal Pulse Width Modulation), and SVPWM (Space Vector Pulse Width Modulation) were simulated by employing the PSIM software tool for analysis and comparisons. The results corroborate that SVPWM has the simplest structure and provides the best performance.

해양산업분야에서는 극심한 대기오염으로 인하여 전기추진선박에 대한 관심이 높아지고 있다. 이로 인해 선내 전력품질의 저하를 개선하기 위한 연구가 활발히 진행되고 있다. 기존 DFE 정류기의 입력전류 고조파 함유량을 완화시키기 위해 수동형필터, 노치필터, 능동형필터 등을 이용한 다양한 방법이 등장하였다. 그 중에서도 능동필터의 일종인 AFE(Active Front End) 정류장치가 우수한 기술로써 평가받고 있다. 본 논문에서는 공간벡터변조에 의한 AFE정류장치의 전류제어방식을 제안하였다. 기존의 히스테리시스 방식, 삼각파 변조방식 및 공간벡터변조방식을 PSIM을 사용해 시뮬레이션을 수행하여 비교, 분석하였고, 그 결과 공간벡터변조방식이 구조가 간단하고 성능이 가장 우수함을 확인하였다.

Keywords

References

  1. Doerry, N. H. and D. H. Clayton(2005), Shipboard electrical power quality of service, IEEE electric ship technologies symposium, pp. 274-279.
  2. Jones, V. C. and B. K. Bose(1976), A frequency step-up cycloconverter using power transistors in inverse-series mode, International Journal of Electronics, Vol. 41, No. 6, pp. 573-587. https://doi.org/10.1080/00207217608920668
  3. Kanellos, F. D.(2014), Optimal Power Management With GHG Emissions Limitation in All-Electric Ship Power Systems Comprising Energy Storage Systems, IEEE Transactions on power systems, Vol. 29, No. 1.
  4. Kim, J. S. and S. K. Sul(1995), A Novel Voltage Modulation Technique of the Space Vector PWM, Korean institute of electrical engineers, Vol. 44, pp. 865-874.
  5. McCoy, T. J.(2002), Trends in ship electric propulsion, IEEE power engineering society summer meeting, pp. 343-346.
  6. Selarka, V., P. Shah, D. J. Vaghela and M. T. Shah(2016), Close loop control of three phase active front end converter using SVPWM Technique, International conference on electrical power and energy systems, pp. 339-344.
  7. Woo, B.(2006), High-Power Converters and AC Drives, New Jersey, USA: John Wiley & Sons.

Cited by

  1. A Study on the Speed Control of Induction Motor Using Modified SVPWM Control Method vol.32, pp.2, 2020, https://doi.org/10.13000/jfmse.2020.4.32.2.581