A Technology Landscape of Artificial Intelligence: Technological Structure and Firms' Competitive Advantages

인공지능 기술 랜드스케이프 : 기술 구조와 기업별 경쟁우위

  • 이왕재 (서울과학기술대학교 IT정책전문대학원/삼성전자 삼성리서치) ;
  • 이학연 (서울과학기술대학교 글로벌융합산업공학과)
  • Received : 2019.02.18
  • Accepted : 2019.04.30
  • Published : 2019.06.30

Abstract

This study analyzes the technological structure of artificial intelligence (AI) and technological capabilities of AI companies based on patent information. 2589 AI patents registered in USPTO from 2007 to 2017 were collected and analyzed by the Latent Dirichlet Allocation (LDA) to derive 20 AI technology topics. Analysis of technology development trends by AI technology reveals that visual understanding, data analysis, motion control, and machine learning are growing, while language understanding and speech technology are sluggish. In addition, we also investigated leading companies in each sub-field of AI as well as core competencies of global IT companies. The findings of this study are expected to be fruitfully used for formulation and implementation of technology strategy of AI companies.

본 연구는 특허 데이터를 활용하여 인공지능 기술의 구조를 파악하고 주요 글로벌 IT 기업들의 인공지능 기술역량을 분석한다. 2007년부터 2017년까지 미국 특허청에 등록된 2,589개의 인공지능 특허를 바탕으로 LDA 토픽모델링을 수행하여 인공지능 분야의 20개의 기술 토픽을 도출하였다. 인공지능 기술 분야 중 언어이해, 음성처리보다는 시각이해, 데이터분석, 동작제어, 그리고 기계학습 분야의 연구개발이 최근 활발한 것으로 나타났다. 또한 기업별 인공지능 기술 역량을 분석하여 인공지능 기술 분야별로 우수 역량을 보유한 기업을 도출하고, 기업별로 강점을 가지고 있는 세부 기술 분야를 도출하였다. 본 연구 결과는 인공지능 기업들의 기술기획 및 전략 수립에 유용하게 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. 강전학.이학연 (2018), "특허 정보를 활용한 클라우드 컴퓨팅 기술 구조 분석", 대한산업공학회지, 44(1): 69-81. https://doi.org/10.7232/JKIIE.2018.44.1.069
  2. 김봉선.김언수 (2014), "특허기술의 특성과 가치의 관계", 전략경영연구, 17(3): 163-181.
  3. 김태경.최회련.이홍철 (2016), "토픽 모델링을 이용한 핀테크 기술 동향 분석", 한국산학기술학회논문지, 17(11): 670-681. https://doi.org/10.5762/KAIS.2016.17.11.670
  4. 박재용 (2018), "특허정보를 이용한 인공지능 기술 동향 분석", 한국컴퓨터정보학회논문지, 23(4): 9-16.
  5. 박주섭.홍순구.김종원 (2017), "토픽모델링을 활용한 과학기술동향 및 예측에 관한 연구", 한국산업정보학회논문지, 22(4): 19-28. https://doi.org/10.9723/jksiis.2017.22.4.019
  6. 임지연 (2016), "글로벌 인공지능 SW 기술 개발 동향", 한국차세대컴퓨팅학회논문지, 12(4): 33-46.
  7. 정명석.이주연 (2018), "Latent Dirichlet Allocation (LDA) 모델 기반의 인공지능(A.I.) 기술 관련 연구 활동 및 동향 분석", 한국산업정보학회논문지, 23(3): 87-95. https://doi.org/10.9723/JKSIIS.2018.23.3.087
  8. 정보권.이학연 (2016), "국내 산업공학 연구 주제 2001-2015", 대한산업공학회지, 42(6):421-431. https://doi.org/10.7232/JKIIE.2016.42.6.421
  9. Andrzejewski, D., Mulhern, A., Liblit, B. and Zhu, X. (2007), "Statistical Debugging Using Latent Topic Models", Proceedings of European Conference on Machine Learning, 6-17.
  10. Anusuya, M. A. and Katti, S. K. (2009), "Speech Recognition by Machine: A Review", International Journal of Computer Science and Information Security, 6(3): 181-205.
  11. Bates, M. (1995), "Models of Natural Language Understanding", PNAS, 92: 9977-9982.
  12. Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Springer.
  13. Blei, D. M. (2012), "Probabilistic Topic Models", Communications of the ACM, 55(4): 77-84. https://doi.org/10.1145/2133806.2133826
  14. Blei, D. M., Ng, A. Y. and Jordan, M. I. (2003), "Latent Dirichlet Allocation", Journal of Machine Learning Research, 3: 993-1022.
  15. Britannica (2019), "Encyclopedia Britannica Article: Artificial Intelligence", https://www.britannica.com/technology/artificial-intelligence (20 March 2019).
  16. Brynjolfsson, E., Rock, D. and Syverson, C. (2017), "Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics", NBER Working Paper.
  17. Cincera, M. (1997), "Patents, R&D, and Technological Spillovers at the Firm Level: Some Evidence from Econometric Count Models for Panel Data", Applied Econometrics, 12: 265-280. https://doi.org/10.1002/(SICI)1099-1255(199705)12:3<265::AID-JAE439>3.0.CO;2-J
  18. Drucker, P. F. (1995), Managing in a Time of Great Change, Truman Talley Books: New York.
  19. French, C. S. (1996), Data Processing and Information Technology, Thomson.
  20. Fujii, H. and Managi, S. (2018), "Trends and Priority Shifts in Artificial Intelligence Technology Invention: A Global Patent Analysis", Economic Analysis and Policy, 58: 60-69. https://doi.org/10.1016/j.eap.2017.12.006
  21. Gaikwad, S. K., Gawali, B. W. and Yannawar, P. (2010), "A Review on Speech Recognition Technique", International Journal of Computer Applications, 10(3): 16-24. https://doi.org/10.5120/1462-1976
  22. Griffiths, T. L. and Steyvers, M. (2004), "Finding Scientific Topics", Proceedings of the National Academy of Sciences, 101: 5228-5235.
  23. Hornik, K. and Grun, B. (2011), "Topicmodels: An R Package for Fitting Topic Models", Journal of Statistical Software, 40(13): 1-30.
  24. IITP (2016), ICT Long Term Technology Road Map 2022.
  25. Kim, J., Jun, S., Jang, D. and Park, S. (2018), "Sustainable Technology Analysis of Artificial Intelligence Using Bayesian and Social Network Models", Sustainability, 10(1): 155. https://doi.org/10.3390/su10010155
  26. Lee, H. and Kang, P. (2018), "Identifying Core Topics in Technology and Innovation Management Studies: a Topic Model Approach", Technology Transfer, 43(5): 1291-1317. https://doi.org/10.1007/s10961-017-9561-4
  27. Lee, H., Seo, H. and Geum, Y. (2018), "Uncovering the Topic Landscape of Product-Service System Research: from Sustainability to Value Creation", Sustainability, 10: 911. https://doi.org/10.3390/su10040911
  28. Maresch, D., Fink, M. and Harms, R. (2016), "When Patents Matter: The Impact of Competition and Patent Age on the Performance Contribution of Intellectual Property Rights Protection", Technovation, 57: 14-20. https://doi.org/10.1016/j.technovation.2015.11.009
  29. Mejia, A. (2019), "Language Understanding", https://azure.microsoft.com/en-us/services/cognitive-services/language-understanding-intelligent-service/ (9 March 2019).
  30. Russell, S., Dewey, D. and Tegmark, M. (2015), "Research Priorities for Robust and Beneficial Artificial Intelligence", AI Magazine, 36(4): 105-114. https://doi.org/10.1609/aimag.v36i4.2577
  31. Samuel, A. L. (1959), "Some Studies in Machine Learning Using the Game of Checkers", IBM Journal of Research and Development, 3(3): 210-229. https://doi.org/10.1147/rd.33.0210
  32. Szeliski, R. (2010), Computer Vision: Algorithms and Applications, Springer.
  33. Winograd, T. (1972), "Understanding Natural Language", Cognitive Psychology, 3(1): l-191. https://doi.org/10.1016/0010-0285(72)90002-3
  34. Witten, I. H., Frank, E., Hall, M. A. and Pal, C. J. (2016), Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann.