References
- Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel. Compos. Struct., 18(3), 659-672. http://doi.org/10.12989/scs.2015.18.3.659.
- Arefi, M. and Zenkour, A.M. (2017a), "Effect of thermo-magnetoelectro-mechanical fields on the bending behaviors of a threelayered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636217697497.
- Arefi, M. and Zenkour, A.M. (2017b), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930.
- Arefi, M. and Zenkour, A.M. (2017c), "Influence of magnetoelectric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636217723186.
- Arefi, M. and Zenkour, A.M. (2017d), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967.
- Arefi, M. and Zenkour, A.M. (2017e), "Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezomagnetic curved nanobeam", Acta. Mech., 228(10), 3657-3674. https://doi.org/10.1007/s00707-017-1892-6.
- Arefi, M. and Zenkour, A.M. (2017f), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Phys. B. Cond. Matt., 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066.
- Arefi, M. (2016), "Analysis of wave in a functionally graded magneto-electro-elastic nano-rod using nonlocal elasticity model subjected to electric and magnetic potentials", Acta Mech., 227, 2529-2542. https://doi.org/10.1007/s00707-016-1584-7.
- Arefi, M., Zamani, M.H. and Kiani, M., (2018), "Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak's foundation", J. Intel. Mater. Syst. Struct., 29(5), 774-786. https://doi.org/10.1177/1045389X17721039.
- Ghasemi, H. Park, H.S. and Rabczuk, T. (2017), "A level-set based IGA formulation for topology optimization of flexoelectric materials", Comput. Meth. Appl. Mech. Eng., 313, 239-258. https://doi.org/10.1016/j.cma.2016.09.029.
- Ghasemi, H. Park, H.S. and Rabczuk, T. (2018), "A multi-material level set-based topology optimization of flexoelectric composites", Comput. Meth. Appl. Mech. Eng., 332, 47-62. https://doi.org/10.1016/j.cma.2017.12.005.
- Hamdia, K.M. Silani, M. Zhuang, X. He, P. and Rabczuk, T. (2017), "Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions", Int. J. Fract., 206(2) 215-227. https://doi.org/10.1007/s10704-017-0210-6.
- Hamdia, K.M. Ghasemi, H. Zhuang, X. Alajlan, N. and Rabczuk, T. (2018), "Sensitivity and uncertainty analysis for flexoelectric nanostructures", Comput. Meth. Appl. Mech. Eng., 337, 95-109. https://doi.org/10.1016/j.cma.2018.03.016.
- Kuang, Y.D., Li, G.Q., Chen, C.Y. and Min, Q. (2007), "The static responses and displacement control of circular curved beams with piezoelectric actuators", Smart. Materi. Struct., 16, 1016-1024. https://doi.org/10.1088/0964-1726/16/4/009
- Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031.
- Nanthakumar, S.S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, T. (2016), "Detection of material interfaces using a regularized level set method in piezoelectric structures", Inv. Prob. Sci. Eng., 24(1), 153-176. https://doi.org/10.1080/17415977.2015.1017485.
- Nguyen, B.H., Zhuang, X. and Rabczuk, T. (2018), "Numerical model for the characterization of Maxwell-Wagner relaxation in piezoelectric and flexoelectric composite material", Comput. Struct., 208, 75-91. https://doi.org/10.1016/j.compstruc.2018.05.006.
- Petyt, M. and Fleischer, C.C. (1971), "Free vibration of a curved beam", J. Sound. Vib. 18(1), 17-30. https://doi.org/10.1016/0022-460X(71)90627-4.
- Piovan, M.T., Olmedo, J.F. and Sampaio, R. (2015), "Dynamics of magneto electro elastic curved beams: Quantification of parametric uncertainties", Compos. Struct., 133, 621-629. https://doi.org/10.1016/j.compstruct.2015.07.084.
- Poon, W.Y., Ng, C.F. and Lee, Y.Y. (2002), "Dynamic stability of a curved beam under sinusoidal loading", Proc. Inst. Mech. Eng. Part G: J. Aer. Eng., 216(4), 209-217. https://doi.org/10.1243/09544100260369740.
- Raveendranath, P., Singh, G. and Pradhan, B. (2000), "Free vibration of arches using a curved beam element based on a coupled polynomial displacement field", Comput. Struct., 78(4), 583-590. https://doi.org/10.1016/S0045-7949(00)00038-9.
- Raveendranath, P., Singh, G. and Pradhan, B. (1999), "A two-noded locking-free shear flexible curved beam element", Int. J. Num. Meth. Eng., 44(2), 265-280. https://doi.org/10.1002/(SICI)1097-0207(19990120)44:2<265::AIDNME505>3.0.CO;2-K
- Shi, Z.F. (2005), "Bending behavior of piezoelectric curved actuator", Smart. Materi. Struct. 14, 835-842. https://doi.org/10.1088/0964-1726/14/4/043
- Shi, Z.F. and Zhang, T. (2008), "Bending analysis of a piezoelectric curved actuator with a generally graded property for the piezoelectric parameter", Smart. Materi. Struct., 17, 045018. https://doi.org/10.1088/0964-1726/17/4/045018
- Surana, K.S. and Sorem, R.M. (1989), "Geometrically non-linear formulation for three dimensional curved beam elements with large rotations", Int. J. Num. Meth. Eng., 28(1), 43-73. https://doi.org/10.1002/nme.1620280106.
- Thai, T.Q., Rabczuk, T. and Zhuang, X. (2017), "A large deformation isogeometric approach for flexoelectricity and soft materials", Comput. Meth. Appl. Mech. Eng., 341, 718-739. https://doi.org/10.1016/j.cma.2018.05.019.
- Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Softw., 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005.
- Zhou, Y., Nyberg, T.R., Xiong, G., Zhou, H. and Li, S. (2017), "Precise deflection analysis of laminated piezoelectric curved beam", J. Intel. Mater. Syst. Struct, 27(16), 2179-2198. https://doi.org/10.1177/1045389X15624797.
- Zhou, Y., Dong, Y. and Li, S. (2010) "Analysis of a Curved Beam MEMS Piezoelectric Vibration Energy Harvester", Adv. Mater. Res., 139-141, 1578-1581. https://doi.org/10.4028/www.scientific.net/AMR.139-141.1578.
Cited by
- Reflection of electro-magneto-thermoelastic plane waves in a rotating medium in context of three theories with two-temperature vol.78, pp.1, 2019, https://doi.org/10.12989/sem.2021.78.1.023