DOI QR코드

DOI QR Code

Electro-elastic analysis of functionally graded piezoelectric variable thickness rotating disk under thermal environment

  • Arefi, Mohammad (Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan) ;
  • Moghaddam, Sina Kiani (Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan)
  • 투고 : 2018.10.09
  • 심사 : 2018.12.05
  • 발행 : 2019.07.10

초록

In this study we derive the governing equations of a functionally graded piezoelectric disk, subjected to thermo-electro-mechanical loads. First order shear deformation theory is used for description of displacement field. Principles of minimum potential energy is used to derive governing equations in terms of components of the displacement field and the electric potential. The governing equations are derived for a disk with variable thickness. The numerical results are presented in terms of important parameters of the problem such as profile of variable thickness, in-homogeneous index and other related parameters.

키워드

참고문헌

  1. Afsar, A. and Go, J. (2010), "Finite element analysis of thermoelastic field in a rotating FGM circular disk", Appl. Math Modelling, 34(11), 3309-3320. https://doi.org/10.1016/j.apm.2010.02.022
  2. Arefi, M. and Rahimi, G. H. (2013), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays., 5(12), 1442-1454.
  3. Arefi, M. and Rahimi, G. (2011), "Nonlinear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5), 433-447. http://dx.doi.org/10.12989/sss.2011.8.5.433.
  4. Arefi, M. and Rahimi, G. (2012), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., 9(2), 127-143. http://doi.org/10.12989/sss.2012.9.2.127.
  5. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), "Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field", Smart. Struct. Syst., 9(5), 427-439. http://doi.org/10.12989/sss.2012.9.5.427.
  6. Arefi, M. and Rahimi, G. (2012), "Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5.
  7. Arefi, M. and Rahimi, G.H. (2014), "Comprehensive piezothermo-elastic analysis of a thick hollow spherical shell", Smart. Struct. Syst., 14(2), 225-246. http://doi.org/10.12989/sss.2014.14.2.225.
  8. Arefi, M. and Allam, M.N.M., (2015), "Nonlinear Responses of an Arbitrary FGP Circular Plate Resting on Foundation", Smart. Struct. Syst., 16(1), 81-100. http://dx.doi.org/10.12989/sss.2015.16.1.081.
  9. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322.
  10. Arefi, M. (2015), "Nonlinear electromechanical analysis of a functionally graded square plate integrated with smart layers resting on Winkler-Pasternak foundation", Smart. Struct. Syst., 16(1), 195-211. https://doi.org/10.12989/sss.2015.16.1.195.
  11. Arefi, M. and Zenkour, A.M. (2017a), "Effect of thermo-magnetoelectro-mechanical fields on the bending behaviors of a threelayered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636217697497.
  12. Arefi, M. and Zenkour, A.M. (2017b), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930.
  13. Bayat, M., Sahari, B., Saleem, M., Aidy, A. and Wong, S. (2009), "Bending analysis of a functionally graded rotating disk based on the first shear deformation theory", Appl. Math. Modeling., 33(11), 4215-4230. https://doi.org/10.1016/j.apm.2009.03.001.
  14. Bayat, M., Sahari, B., Saleem, M., Hambouda, A. and Mahdi, E. (2007), "Thermoelastic analysis of a functionally graded rotating disk with small and large deflections", Thin. Wall. Struct., 45(7), 677-691. https://doi.org/10.1016/j.tws.2007.05.005.
  15. Chen, J., Ding, H. and Chen, W. (2007), "Three-dimensional analytical solution for a rotating disc of functionally graded materials with transverse isotropy", Arch. Appl. Mech., 77(4), 241-251. https://doi.org/10.1007/s00419-006-0098-5.
  16. Dai, H. and Dai, H. (2017), "Analysis of a rotating FGMME circular disk with variable thickness under thermal environment", Appl. Math. Modelling., 45, 900-924. https://doi.org/10.1016/j.apm.2017.01.007.
  17. Durodola, J. and Attia, O. (2000), "Deformations and stresses in functionally graded graded rotating disks", Compos. Sci. Tech., 60(7), 897-995. https://doi.org/10.1016/S0266-3538(99)00197-9.
  18. Durodola, J. and Attia, O. (2000), "Property gradation for modification response of rotating MMC discs", Mater. Sci. Tech., 16(7-8), 919-924. https://doi.org/10.1179/026708300101508694.
  19. Ghasemi, H., Park, H.S. and Rabczuk, T. (2018), "A multi-material level set based topology optimization of flexoelectric composites", Comput. Meth. Appl. Mech. Eng., 332, 47-62. https://doi.org/10.1016/j.cma.2017.12.005.
  20. Ghasemi, H., Park, H. and Rabczuk, T. (2017), "A leve-set based IGA formulation for topology optimization of flexoelectric materials", Comput. Meth. Appl. Mech. Eng., 313, 239-258. https://doi.org/10.1016/j.cma.2016.09.029.
  21. Hamdia, K.M., Silani, M., Zhuang, X., He, P. and Rabczuk, T. (2017), "Stochastic analysis of the fracture toughness of polymeric nanoparticle composite using polynomial chaos expansion", Int. J. Frac., 206(2), 215-227. https://doi.org/10.1007/s10704-017-0210-6.
  22. Holt, J., Koizumi, M., Hirai, T. and Munir, Z. (1993), "Ceramic transactions: Functionally Gradient Materials", American Ceramic Soc., 34.
  23. Jahed, H. and Sherkatti, S. (2000), "Thermoplastic analysis of inhomogeneous rotating disk with variable thickness", EMHS Conference of Fatigue, Cambridge, Untied Kingdom, April.
  24. Kheirkhah, S. and Loghman, A. (2015), "Electric potential redistribution due to time dependent creep in thick walled FGPM cylinder based on Mendelson method of successive approximation", Struct. Eng. Mech., 53(6), 1167-1182. https://doi.org/10.12989/sem.2015.53.6.1167.
  25. Li, X., Ding, H. and Chen, W. (2006), "Pure bending of a simply supported circular plate of transversely isotropic functionally graded material", J. Zhej. Uni. Sci., A7(8), 1324-1328. https://doi.org/10.1631/jzus.2006.A1324.
  26. Li, X., Ding, H. and Chen, W. (2008), "Elasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load qr K", Int. J. Solids. Struct., 45(1), 191-210. https://doi.org/10.1016/j.apm.2010.02.022.
  27. Loghman, A., Abdollahian, M., Jazi, A. and Arani, A. (2013), "Semi-analytical solution for electromagne to thermoelastic creep response of a functionally graded piezo-electric rotating disk", Int. J. Therm. Sci., 65, 254-266. https://doi.org/10.1016/j.ijthermalsci.2012.10.011.
  28. Nanthakumar, S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, T. (2016), "Detection of material interfaces using a regularized level set method in piezoelectric structures", Inv. Prob. Sci. Eng., 24(1), 153-176. https://doi.org/10.1080/17415977.2015.1017485.
  29. Nguyen, B., Nanthakumar, S., Zhuang, X., Wriggers, P., Jiang, X. and Rabczuk, T. (2018), "Dynamic flexoelectric effect on piezoelectric nanostructures", Euro. J. Mech.- A/Solids, 71, 404-409. https://doi.org/10.1016/j.euromechsol.2018.06.002.
  30. Nguyen, B., Zhuang, X. and Rabczuk, T. (2018), "Numerical model for the characterization of Maxwell-Wagner relaxation in piezoelectric and flexoelectric composite material", Comput. Struct., 208, 75-91. https://doi.org/10.1016/j.compstruc.2018.05.006.
  31. Deneva, P., Gross, D., Muller, R. and Rangelov, T. (2014), Dynamic Fracture of Piezoelectric Materials, Springer, Germany.
  32. Parveen, G. and Reddy, J. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solids. Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9.
  33. Reddy, J. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  34. Reddy, J., Wang, C. and Kitipornchai, S. (1999), "Axisymmetric bending of a functionally graded circular and annular plare", J. Mech.-A/solids, 18(2), 185-199. https://doi.org/10.1016/S0997-7538(99)80011-4.
  35. Suresh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Materials, The Institute of Materials, United Kingdom.
  36. Thai, T., Rabczuk, T. and Zhuang, X. (2018), "A large deformation isogeometric approach for flexoelectric and soft materials", Comput. Meth. Appl. Eng., 341, 7 18-739. https://doi.org/10.1016/j.cma.2018.05.019
  37. Vu Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computational expensive models", Adv. Eng. Soft., 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005
  38. Zenkour, A. and Mashat, D. (2011), "Stress function of a variable-thickness annular disk using exact and numerical methods", Engineering., 3(04), 422. https://:10.4236/eng.2011.34048.