DOI QR코드

DOI QR Code

A first-principles theoretical investigation of the structural, electronic and magnetic properties of cubic thorium carbonitrides ThCxN(1-x)

  • Siddique, Muhammad (Department of Physics, The University Of Lahore, Raiwind Road Campus Lahore) ;
  • Rahman, Amin Ur (Faculty of Engineering and Applied Sciences, Department of Physics, RIPHAH International University) ;
  • Iqbal, Azmat (Faculty of Engineering and Applied Sciences, Department of Physics, RIPHAH International University) ;
  • Azam, Sikander (Faculty of Engineering and Applied Sciences, Department of Physics, RIPHAH International University)
  • 투고 : 2018.11.17
  • 심사 : 2019.03.06
  • 발행 : 2019.06.25

초록

Besides promising implications as fertile nuclear materials, thorium carbonitrides are of great interest owing to their peculiar physical and chemical properties, such as high density, high melting point, good thermal conductivity. This paper reports first-principles simulation results on the structural, electronic and magnetic properties of cubic thorium carbonitrides $ThC_xN_{(1-x)}$ (X = 0.03125, 0.0625, 0.09375, 0.125, 0.15625) employing formalism of density-functional-theory. For the simulation of physical properties, we incorporated full-potential linearized augmented plane-wave (FPLAPW) method while the exchange-correlation potential terms in Kohn-Sham Equation (KSE) are treated within Generalized-Gradient-Approximation (GGA) in conjunction with Perdew-Bruke-Ernzerhof (PBE) correction. The structural parameters were calculated by fitting total energy into the Murnaghan's equation of state. The lattice constants, bulk moduli, total energy, electronic band structure and spin magnetic moments of the compounds show dependence on the C/N concentration ratio. The electronic and magnetic properties have revealed non-magnetic but metallic character of the compounds. The main contribution to density of states at the Fermi level stems from the comparable spectral intensity of Th (6d+5f) and (C+N) 2p states. In comparison with spin magnetic moments of ThSb and ThBi calculated earlier with LDA+U approach, we observed an enhancement in the spin magnetic moments after carbon-doping into ThN monopnictide.

키워드

참고문헌

  1. T. Abram, S. Ion, Energy Policy 36 (2008) 4323. https://doi.org/10.1016/j.enpol.2008.09.059
  2. M.S.S. Brooks, P.J. Kelly, Phys. Rev. Lett. 51 (1983) 1708. https://doi.org/10.1103/PhysRevLett.51.1708
  3. M. S. S. Brooks, J. Phys. F: Met. Phys. 14, 857 (1984). https://doi.org/10.1088/0305-4608/14/4/010
  4. A.B. Auskern, S. Aronson, J. Sadofsky, F.J. Salzano, J. Phys. Chem. Solids 27 (1965) 613. https://doi.org/10.1016/0022-3697(66)90207-1
  5. A.B. Auskern, S. Aronson, J. Appl. Phys. 38 (1967) 3508. https://doi.org/10.1063/1.1710161
  6. A.B. Auskern, S. Aronson, J. Phys. Chem. Solids 28 (1967) 1069. https://doi.org/10.1016/0022-3697(67)90224-7
  7. J. Piper, in: J.T. Weber, P. Chiotti (Eds.), International Symposium on Compounds of Interst in Nuclear Rector Technology, Amercian Instute of Mining, Metallurgical and Petroleum Engineers, New York, 1964, p. 29.
  8. R.A. Fynn, A.K. Ray, A Fully Relativistic Density Functional Study of the Actinide Nitrides, vol. 760, Ph. Deptt. University of Texas at Arlington, Arlington, Texas, 2009, p. 19.
  9. S. Aronson, A.B. Auskern, J. Chem. Phys. 48 (1968) 1760. https://doi.org/10.1063/1.1668908
  10. I.R. Shein, K.I. Shein, A.L. Ivanovskii, J. Nucl. Mater. 353 (2006) 19. https://doi.org/10.1016/j.jnucmat.2006.02.075
  11. W. Lengauer, in: R. Riedel (Ed.), Transition Metal Carbides, Nitrides and Carbo-Nitrides, Handbook of Ceramic Hard Materials, vol. 1, Wiley-VCH, Weinheim, 2000, pp. 202-252.
  12. R.S. Street, T.N. Waters, J. Less Common. Met. 5 (1963) 295. https://doi.org/10.1016/0022-5088(63)90034-1
  13. H. Kleykamp, Thorium carbides, in: Gmelin Handbook of Inorganic and Organometallic Chemistry, eighth ed., Thorium supplement vol. C6, Springer, Berlin, 1992, pp. 115-132.
  14. R. Kieffer, W. Wruss, K. Constant, H. Habermann, Monatsh. Chem. 106 (1975) 1349. https://doi.org/10.1007/BF00913609
  15. V. Richter, A. Beger, J. Drobniewski, I. Endler, E. Wolf, Mater. Sci. Eng., A 209 (1996) 353. https://doi.org/10.1016/0921-5093(95)10109-8
  16. Q. Yang, W. Lengauer, T. Koch, M. Scheerer, I. Smid, J. Alloy. Comp. 309 (2000) L5. https://doi.org/10.1016/S0925-8388(00)01057-4
  17. S.-H. Jhi, J. Ihm, Phys. Rev. B 56 (1997) 13826. https://doi.org/10.1103/PhysRevB.56.13826
  18. S.-H. Jhi, J. Ihm, S.G. Louie, M.L. Cohen, Nature 399 (1999) 132. https://doi.org/10.1038/20148
  19. B.M. Klein, Nature 399 (1999) 108. https://doi.org/10.1038/20084
  20. A. Zaoui, B. Bouhafs, P. Ruterana, Mater. Chem. Phys. 91 (2005) 108. https://doi.org/10.1016/j.matchemphys.2004.10.056
  21. B. Kolb, G.L.W. Hart, Phys. Rev. B 72 (2005) 224207. https://doi.org/10.1103/PhysRevB.72.224207
  22. V.A. Gubanov, A.L. Ivanovskii, V.P. Zhukov, Electronic Structure of Refractory Carbides and Nitrides, second ed., Cambridge University Press, Cambridge, 2005.
  23. L. Calmels, C. Migguet, Y. Kihn, Phys. Rev. B 73 (2006) 024207. https://doi.org/10.1103/PhysRevB.73.024207
  24. A.B. Auskern, S. Aronson, J. Appl. Phys. 41 (1970) 227. https://doi.org/10.1063/1.1658325
  25. S. Ozaki, Y. Ono, M. Kanno, J. Nucl. Sci. Technol. 10 (1973) 374. https://doi.org/10.1080/18811248.1973.9735436
  26. I.R. Shein, K.I. Snein, N.I. Medvedeva, A.L. Ivanovskii, Phys. Stat. Sol. (b) 244 (2007) 3198. https://doi.org/10.1002/pssb.200743125
  27. I.R. Shein, A.L. Ivanovskii, J. Struct. Chem. 49 (2008) 348. https://doi.org/10.1007/s10947-008-0134-0
  28. D. Perez Daroca, A.M. Llois, H.O. Mosca, J. Nucl. Mater. 480 (2016) 1. https://doi.org/10.1016/j.jnucmat.2016.07.057
  29. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, in: K. Schwarz (Ed.), WEIN2K, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Techn, University Wein, Austria, 2001.
  30. P. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) 864. https://doi.org/10.1103/PhysRev.136.B864
  31. W. Khon, L.J. Sham, Phys. Rev. A 140 (1965) 1133. https://doi.org/10.1103/PhysRev.140.A1133
  32. J.P. Perdew, K. Bruke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  33. N.Q. Su1, X. Xu, Annu. Rev. Phys. Chem. 68 (2017) 8.1.
  34. M. Levy, On the foundations of density-functional theory, Presented at Int. Workshop Quantum Syst. Chem. Phys., 15th, Cambridge Univ., Cambridge, UK, 2010. Aug. 31-Sep. 5.
  35. F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30 (1944) 244. https://doi.org/10.1073/pnas.30.9.244
  36. V. Kanchana, et al., Acta Cryst B70 (2014) 459.
  37. J.S. Olsen, et al., J. Appl. Crystallogr. 22 (1989) 61. https://doi.org/10.1107/S002188988801091X
  38. L. Gerward, et al., J. Appl. Crystallogr. 18 (1985) 339. https://doi.org/10.1107/S0021889885010421
  39. S. Amari, et al., J. Nucl. Matter. 454 (2014) 186. https://doi.org/10.1016/j.jnucmat.2014.07.026
  40. D. Perez Daroca, et al., J. Nucl. Mater. 437 (2013) 135. https://doi.org/10.1016/j.jnucmat.2013.01.350
  41. A. Hasegawa, H. Yamagami, J. Phys. Soc. Jpn. 59 (1990) 218. https://doi.org/10.1143/JPSJ.59.218
  42. T. Maehira, M. Higuchi, M. Nakamura, A. Hasegawa, J. Phys. Condens. Matter 10 (1998) 11565. https://doi.org/10.1088/0953-8984/10/49/046
  43. Xiaojun Li, J. Mater. Chem. C 6 (2018) 7576-7583. https://doi.org/10.1039/C8TC02146E
  44. Xiaojun Li, Shikun Li, J. Mater. Chem. C (2018), https://doi.org/10.1039/C8TC05392H.
  45. H.H. Hill, in: W.N. Miner (Ed.), Plutonium 1970 and Other Actinides, The metallurgical Society of the AIME, New York, 1970.
  46. M. Siddique, et al., Computational Condensed Matter 13 (2017) 111. https://doi.org/10.1016/j.cocom.2017.10.003
  47. F.A. Kassan Ogly, et al., Th Physics of Metals and Metallography 114 (2013) 1155. https://doi.org/10.1134/S0031918X13130024

피인용 문헌

  1. Mechanical and thermodynamic stability, structural, electronics and magnetic properties of new ternary thorium-phosphide silicides ThSixP1-x: First-principles investigation and p vol.53, pp.2, 2021, https://doi.org/10.1016/j.net.2020.07.019